923 resultados para Matriz de Markov
Resumo:
O artigo analisa a convergência municipal da produtividade vegetal (extração vegetal e silvicultura) na região da Amazônia Legal entre os anos de 1996 e 2006. Para analisar a convergência, optou-se pela metodologia da matriz de transição de Markov (Processo Estacionário de Primeira Ordem de Markov). Os resultados mostram a existência de 13 classes de convergência da produtividade vegetal. No longo prazo, a hipótese de convergência absoluta não se mantém, visto que 68,23% dos municípios encontram-se numa classe inferior à média municipal, 33,54% em uma classe intermediária acima da média e 13,41% em uma classe superior acima da média.
Resumo:
p.21-27
Resumo:
Comprobar que el aprendizaje sigue el proceso descrito por Markov. Muestra tomada al azar entre los alumnos del Centro de Educación Especial 'Santísimo Cristo de la Misericordia' de Espinardo (Murcia). Está formada por dos grupos de edades comprendidas entre los 6 y 14 años y con características intelectuales distintas. Grupo I: 20 sujetos que se encuentran en el estadio de no conservación. Grupo II: 10 sujetos que se encuentran en estadio intermedio. La investigación se llevó a cabo en el grupo I siguiendo los pasos siguientes: A/ Diagnóstico operatorio para situar a los sujetos en el nivel de no conservación, aunque en distintos subniveles; B/ Aprendizaje operatorio mediante ejercicios con materiales discretos y aprendizaje con materiales continuos a través de 5 situaciones. A lo largo de este aprendizaje se utilizó el test-postest para establecer la adquisición de cada paso y los ejercicios concretos para alcanzar el siguiente. El grupo II sirvió para construir el vector de probabilidad I en la matriz inicial. Material operatorio. El estudio se sitúa en el modelo cognitivo, desde el punto de vista de la Psicología Genética y describe una situación experimental utilizando para el análisis de los datos matrices de transición 3 x 3 con los vectores de probabilidad y vectores de probabilidad obtenidos directamente del proceso de aprendizaje. Las diferencias más altas encontradas entre los vectores de probabilidad de los aprendizajes y los vectores de probabilidad de la matriz de transición, fueron menores del 3. En este estudio se han encontrado hasta 11 conductas en la adquisición de la conservación de la cantidad. Se ha comprobado con esta investigación que el aprendizaje de la conservación del número sigue un modelo markoviano, y se termina exponiendo que es posible establecer una matriz de transición 11 x 11 con estimadores de máxima probabilidad para los parámetros con el fin de poder establecer si los 11 niveles son genéticamente diferentes por donde han de pasar los individuos en la adquisición del concepto de número, o son conductas distintas del mismo nivel genético.
Resumo:
Este trabalho elabora um modelo para investigação do padrão de variação do crescimento econômico, entre diferentes países e através do tempo, usando um framework Markov- Switching com matriz de transição variável. O modelo desenvolvido segue a abordagem de Pritchett (2003), explicando a dinâmica do crescimento a partir de uma coleção de diferentes estados – cada qual com seu sub-modelo e padrão de crescimento – através dos quais os países oscilam ao longo do tempo. A matriz de transição entre os diferentes estados é variante no tempo, dependendo de variáveis condicionantes de cada país e a dinâmica de cada estado é linear. Desenvolvemos um método de estimação generalizando o Algoritmo EM de Diebold et al. (1993) e estimamos um modelo-exemplo em painel com a matriz de transição condicionada na qualidade das instituições e no nível de investimento. Encontramos três estados de crescimento: crescimento estável, ‘milagroso’ e estagnação - virtualmente coincidentes com os três primeiros de Jerzmanowski (2006). Os resultados mostram que a qualidade das instituições é um importante determinante do crescimento de longo prazo enquanto o nível de investimento tem papel diferenciado: contribui positivamente em países com boa qualidade de instituições e tem papel pouco relevante para os países com instituições medianas ou piores.
Resumo:
This paper proposes a novel relative entropy rate (RER) based approach for multiple HMM (MHMM) approximation of a class of discrete-time uncertain processes. Under different uncertainty assumptions, the model design problem is posed either as a min-max optimisation problem or stochastic minimisation problem on the RER between joint laws describing the state and output processes (rather than the more usual RER between output processes). A suitable filter is proposed for which performance results are established which bound conditional mean estimation performance and show that estimation performance improves as the RER is reduced. These filter consistency and convergence bounds are the first results characterising multiple HMM approximation performance and suggest that joint RER concepts provide a useful model selection criteria. The proposed model design process and MHMM filter are demonstrated on an important image processing dim-target detection problem.
Resumo:
The Thai written language is one of the languages that does not have word boundaries. In order to discover the meaning of the document, all texts must be separated into syllables, words, sentences, and paragraphs. This paper develops a novel method to segment the Thai text by combining a non-dictionary based technique with a dictionary-based technique. This method first applies the Thai language grammar rules to the text for identifying syllables. The hidden Markov model is then used for merging possible syllables into words. The identified words are verified with a lexical dictionary and a decision tree is employed to discover the words unidentified by the lexical dictionary. Documents used in the litigation process of Thai court proceedings have been used in experiments. The results which are segmented words, obtained by the proposed method outperform the results obtained by other existing methods.
Resumo:
We evaluate the performance of several specification tests for Markov regime-switching time-series models. We consider the Lagrange multiplier (LM) and dynamic specification tests of Hamilton (1996) and Ljung–Box tests based on both the generalized residual and a standard-normal residual constructed using the Rosenblatt transformation. The size and power of the tests are studied using Monte Carlo experiments. We find that the LM tests have the best size and power properties. The Ljung–Box tests exhibit slight size distortions, though tests based on the Rosenblatt transformation perform better than the generalized residual-based tests. The tests exhibit impressive power to detect both autocorrelation and autoregressive conditional heteroscedasticity (ARCH). The tests are illustrated with a Markov-switching generalized ARCH (GARCH) model fitted to the US dollar–British pound exchange rate, with the finding that both autocorrelation and GARCH effects are needed to adequately fit the data.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.