942 resultados para Matrix-metalloproteinase Activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The inability to distinguish periapical cysts from granulomas before performing root canal treatment leads to uncertainty in treatment outcomes because cysts have lower healing rates. Searching for differential expression of molecules within cysts or granulomas could provide information with regard to the identity of the lesion or suggest mechanistic differences that may form the basis for future therapeutic intervention. Thus, we investigated whether granulomas and cysts exhibit differential expression of extracellular matrix (ECM) molecules. Methods: Human periapical granulomas, periapical cysts, and healthy periodontal ligament tissues were used to investigate the differential expression of ECM molecules by microarray analysis. Because matrix metalloproteinases (MMP) showed the highest differential expression in the microarray analysis, MMPs were further examined by in situ zymography and immunohistochemistry. Data were analyzed by using one-way analysis of variance followed by the Tu-key test. Results: We observed that cysts and granulomas differentially expressed several ECM molecules, especially those from the MMP family. Compared with cysts, granulomas exhibited higher MMP enzymatic activity in areas stained for MMP-9. These areas were composed of polymorphonuclear cells (PMNs) in contrast to cysts. Similarly, MMP-13 was expressed by a greater number of cells in granulomas compared with cysts. Conclusion: Our findings indicate that high enzymatic MIMP activity in PMNs together with MMP-9 and MMP-13 stained cells could be a molecular signature of granulomas unlike periapical cysts. (J Endod 2009;35:1234-1242)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To evaluate the origin and degree of activity of nitric oxide (NO) and matrix metalloproteinase (MMP) in explants of cranial cruciate ligaments (CCLs) obtained from dogs and cultured with and without inflammatory activators. SAMPLE POPULATION Tissue specimens obtained from 7 healthy adult Beagles that were (mean +/- SD) 4.5 +/- 0.5 years old and weighed 12.5 +/- 0.8 kg. PROCEDURE The CCLs were harvested immediately after dogs were euthanatized, and specimens were submitted for explant culture. Cultures were stimulated by incubation with a combination of interleukin-1, tumor necrosis factor-alpha, and lipopolysaccharide, or they were not stimulated. Culture supernatants were examined for production of NO nitrite-nitrate metabolites (NOts) and activity of MMP Cultured specimens were evaluated by use of immunohistochemical analysis to detect activity of inducible NO synthase (iNOS). RESULTS All ligament explants produced measurable amounts of NOts. Stimulated cultures produced significantly more NOts after incubation for 24 and 48 hours, compared with nonstimulated cultures. Production of MMP in supernatants after incubation for 48 hours was significantly higher in stimulated cultures than in nonstimulated cultures. Cells with positive staining for iNOS were detected on all slides. Positively stained cells were predominantly chondroid metaplastic. There was a significant difference in intensity of cell staining between stimulated and non-stimulated cultures. CONCLUSIONS AND CLINICAL RELEVANCE Explant cultures of intact CCLs obtained from dogs produce iNOS-induced NO. Stimulation of chondroid metaplastic cells in CCL of dogs by use of inflammatory activators can increase production of iNOS, NOts, and MMP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix metalloproteinases expression is used as biomarker for various cancers and associated malignancies. Since these proteinases can cleave many intracellular proteins, overexpression tends to be toxic; hence, a challenge to purify them. To overcome these limitations, we designed a protocol where full length pro-MMP2 enzyme was overexpressed in E. coli as inclusion bodies and purified using 6xHis affinity chromatography under denaturing conditions. In one step, the enzyme was purified and refolded directly on the affinity matrix under redox conditions to obtain a bioactive protein. The pro-MMP2 protein was characterized by mass spectrometry, CD spectroscopy, zymography and activity analysis using a simple in-house developed `form invariant' assay, which reports the total MMP2 activity independent of its various forms. The methodology yielded higher yields of bioactive protein compared to other strategies reported till date, and we anticipate that using the protocol, other toxic proteins can also be overexpressed and purified from E. coli and subsequently refolded into active form using a one step renaturation protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischaemic injury impairs the integrity of the blood-brain barrier (BBB). In this study, we investigated the molecular causes of this defect with regard to the putative correlations among NAD(P)H oxidase, plasminogen-plasmin system components, and matrix metalloproteinases. Hence, the activities of NAD(P)H oxidase, matrix metalloproteinase-2, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA), and superoxide anion levels, were assessed in human brain microvascular endothelial cells (HBMECs) exposed to oxygen-glucose deprivation (OGD) alone or OGD followed by reperfusion (OGD + R). The integrity of an in vitro model of BBB comprising HBMECs and astrocytes was studied by measuring transendothelial electrical resistance and the paracellular flux of albumin. OGD with or without reperfusion (OGD ± R) radically perturbed barrier function while concurrently enhancing uPA, tPA and NAD(P)H oxidase activities and superoxide anion release in HBMECs. Pharmacological inactivation of NAD(P)H oxidase attenuated OGD ± R-mediated BBB damage through modulation of matrix metalloproteinase-2 and tPA, but not uPA activity. Overactivation of NAD(P)H oxidase in HBMECs via cDNA electroporation of its p22-phox subunit confirmed the involvement of tPA in oxidase-mediated BBB disruption. Interestingly, blockade of uPA or uPA receptor preserved normal BBB function by neutralizing both NAD(P)H oxidase and matrix metalloproteinase-2 activities. Hence, selective targeting of uPA after ischaemic strokes may protect cerebral barrier integrity and function by concomitantly attenuating basement membrane degradation and oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart failure is associated with a skeletal muscle myopathy with cellular and extracellular alterations. The hypothesis of this investigation is that extracellular changes may be associated with enhanced mRNA expression and activity of matrix metalloproteinases (MMP). We examined MMP mRNA expression and MMP activity in Soleus (SOL), extensor digitorum longus (EDL), and diaphragm (DIA) muscles of young Wistar rat with monocrotaline-induced heart failure. Rats injected with saline served as age-matched controls. MMP2 and MMP9 mRNA contents were determined by RT-PCR and MMP activity by electrophoresis in gelatin-containing polyacrylamide gels in the presence of SDS under non-reducing conditions. Heart failure increased MMP9 mRNA expression and activity in SOL, EDL and DIA and MMP2 mRNA expression in DIA. These results suggest that MMP changes may contribute to the skeletal muscle myopathy during heart failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initial events in prostatic morphogenesis involve cell proliferation, epithelial canalization and outgrowth toward the stroma. We have hypothesized that stromal rearrangement takes place at the sites of epithelial growth and branching and that this rearrangement involves the action of gelatinases matrix metalloproteinase (MMP)-2 and MMP-9. Thus, the purpose of the present study was to characterize structural aspects of epithelial growth during the first week of postnatal development of the rat ventral prostate and to investigate the expression, localization and activity of MMP-2 and MMP-9 during this period by histological, ultrastructural and immunocytochemical analysis, in addition to gel zymography, in situ zymography and Western blotting. An increasing complexity of prostatic architeture was observed within the first postnatal week. Concurrently, the stroma became more organized and some cells differentiated into smooth muscle cells. Reticulin fibers appeared in a basket-like arrangement around both growing tips and epithelial sprouts, associated with a fainter staining for laminin. MMP-2 and MMP-9 activities were detected. MMP-2/MMP-9 expression decreased during the first week. Developing epithelial cords showed strong and difuse gelatinolytic activity. This activity coincided with the distribution of MMP-2 as determined by immunocytochemistry. on the other hand, MMP-9 was rather concentrated at the epithelial tips. These results suggest that gelatinolytic activity (with contribution of both MMP-2 and MMP-9) in the epithelium and at the epithelium-stroma interface are at least in part responsible for the tissue remodeling that allows epithelial growth and its projection into the surrounding stroma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased expression of matrix metalloproteinase-1 (MMP1) is associated with poor prognosis in cancers. Several single nucleotide polymorphisms (-1607GG > G, -839G > A, -755G > T, -519A > G, -422T > A, -340C > T, and 320C > T) in the MMP1 gene promoter have recently been identified. In this study, we assessed the functional effects of these polymorphisms on MMP1 gene promoter activity in cell lines of melanoma (A2058 and A375), breast cancer (MCF7 and MDA-MB-231), lung cancer (A549 and H69), and colorectal cancer (HT-29, SW-620) by comparing the promoter strengths of 10 most common haplotypes deriving from these polymorphisms. In A2058 cells, the GG-G-G-A-T-T-T and GG-G-G-A-C-T haplotypes had 2-fold higher promoter activity than the GG-G-T-A-T-T-C, GG-G-G-A-A-T-T, GG-G-G-A-T-T-C, and GG-G-G-A-A-C-T haplotypes, which in turn, had 3-fold higher promoter activity than the G-G-T-A-A-C-T, G-A-T-G-T-T-T, G-A-T-G-A-C-T, and G-A-T-G-A-T-G haplotypes. In A375 and MDA-MB-231 cells, high expression haplotypes include not only the -1607GG-bearing haplotypes but also the G-A-T-G-A-T-T haplotype containing the -1607G allele. A similar trend was detected in A549 cells. In addition, in A549 cells, the GG-G-G-A-T-T-T haplotype had > 2-fold higher promoter activity than several other 1607GG-bearing haplotypes. In MCF7 cells, the GG-G-G-A-T-T-T and G-G-T-A-A-C-T haplotypes had 1.5- to 4-fold higher promoter activity than the other haplotypes. These results suggest that the polymorphisms exert haplotype effects on the transcriptional regulation of the MMP1 gene in cancer cells, and indicate a need to examine haplotypes rather than any single polymorphism in genetic epidemiologic studies of the MMP1 gene in cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metalloproteinases have been implicated in the pathogenesis of equine laminitis and other inflammatory conditions, through their role in the degradation and remodelling of the extracellular matrix environment. Matrix metalloproteinases (MMPs) and their inhibitors are present in normal equine lamellae, with increased secretion and activation of some metalloproteinases reported in horses with laminitis associated with systemic inflammation. It is unknown whether these enzymes are involved in insulin-induced laminitis, which occurs without overt systemic inflammation. In this study, gene expression of MMP-2, MMP-9, MT1-MMP, ADAMTS-4 and TIMP-3 was determined in the lamellar tissue of normal control horses (n = 4) and horses that developed laminitis after 48 h of induced hyperinsulinaemia (n = 4), using quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). Protein concentrations of MMP-2 and MMP-9 were also examined using gelatin zymography in horses subject to prolonged hyperinsulinaemia for 6 h (n = 4), 12 h (n = 4), 24 h (n = 4) and 48 h (n = 4), and in normal control horses (n = 4). The only change in gene expression observed was an upregulation of MMP-9 (p < 0.05) in horses that developed insulin-induced laminitis (48 h). Zymographical analysis showed an increase (p < 0.05) in pro MMP-9 during the acute phase of laminitis (48 h), whereas pro MMP-2 was present in similar concentration in the tissue of all horses. Thus, MMP-2, MT1-MMP, TIMP-3 and ADAMTS-4 do not appear to play a significant role in the pathogenesis of insulin-induced laminitis. The increased expression of MMP-9 may be associated with the infiltration of inflammatory leukocytes, or may be a direct result of hyperinsulinaemia. The exact role of MMP-9 in basement membrane degradation in laminitis is uncertain as it appears to be present largely in the inactive form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pro-fibrotic role of matrix metalloproteinase-9 (MMP-9) in tubular cell epithelial-mesenchymal transition (EMT) is well established in renal fibrosis; however studies from our group and others have demonstrated some previously unrecognized complexity of MMP-9 that has been overlooked in renal fibrosis. Therefore, the aim of this study was to determine the expression pattern, origin and the exact mechanism underlying the contribution of MMP-9 to unilateral ureteral obstruction (UUO), a well-established model of renal fibrosis via MMP-9 inhibition. Renal MMP-9 expression in BALB/c mice with UUO was examined on day 1, 3, 5, 7, 9, 11 and 14. To inhibit MMP-9 activity, MMP-2/9 inhibitor or MMP-9-neutralizing antibody was administered daily for 4 consecutive days from day 0-3, 6-9 or 10-13 and tissues harvested at day 14. In UUO, there was a bi-phasic early- and late-stage upregulation of MMP-9 activity. Interestingly, tubular epithelial cells (TECs) were the predominant source of MMP-9 during early stage, whereas TECs, macrophages and myofibroblasts produced MMP-9 during late-stage UUO. Early- and late-stage inhibition of MMP-9 in UUO mice significantly reduced tubular cell EMT and renal fibrosis. Moreover, MMP-9 inhibition caused a significant reduction in MMP-9-cleaved osteopontin and macrophage infiltration in UUO kidney. Our in vitro study showed MMP-9-cleaved osteopontin enhanced macrophage transwell migration and MMP-9 of both primary TEC and macrophage induced tubular cell EMT. In summary, our result suggests that MMP-9 of both TEC and macrophage origin may directly or indirectly contribute to the pathogenesis of renal fibrosis via osteopontin cleavage, which, in turn further recruit macrophage and induce tubular cell EMT. Our study also highlights the time dependency of its expression and the potential of stage-specific inhibition strategy against renal fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of the matrix metalloproteinase 2 (MMP-2) has been shown to play a major role in the proteolysis of extracellular matrix (ECM) associated with tumor invasion. Although the precise mechanism of this activation remains elusive, levels of the membrane type 1-MMP (MT1-MMP) at the cell surface and of the tissue inhibitor of MMP-2 (TIMP-2) appear to be two important determinants. Induction of MMP-2 activation in cells cultivated on collagen type I gels indicated that the ECM is important in the regulation of this process. In this study, we show that SPARC/osteonectin, a small ECM- associated matricellular glycoprotein, can induce MMP-2 activation in two invasive breast cancer cell lines (MDA-MB-231 and BT549) but not in a noninvasive counterpart (MCF7), which lacks MT1-MMP. Using a set of peptides from different regions of SPARC, we found that peptide 1.1 (corresponding to the NH2-terminal region of the protein) contained the activity that induced NIMP-2 activation. Despite the requirement for MT1-MMP, seen in MCF-7 cells transfected with MT1-MMP, the activation of MMP-2 by SPARC peptide 1.1 was not associated with increased steady-state levels of MT1-MMP mRNA or protein in either MT1-MMP-transfected MCF-7 cells or constitutively expressing MDA- MB-231 and BT549 cells. We did, however, detect decreased levels of TIMP-2 protein in the media of cells incubated with peptide 1.1 or recombinant SPARC; thus, the induction of MMP-2 activation by SPARC might be due in part to a diminution of TIMP-2 protein. We conclude that SPARC, and specifically its NH2-terminal domain, regulates the activation of MMP-2 at the cell surface and is therefore likely to contribute to the proteolytic pathways associated with tumor invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The suggested model for pro-matrix metalloproteinase-2 (proMMP-2) activation by membrane type 1 MMP (MT1-MMP) implicates the complex between MT1-MMP and tissue inhibitor of MMP-2 (TIMP-2) as a receptor for proMMP-2. To dissect this model and assess the pathologic significance of MMP-2 activation, an artificial receptor for proMMP-2 was created by replacing the signal sequence of TIMP-2 with cytoplasmic/transmembrane domain of type II transmembrane mosaic serine protease (MSP-T2). Unlike TIMP-2, MSP-T2 served as a receptor for proMMP-2 without inhibiting MT1-MMP, and generated TIMP-2-free active MMP-2 even at a low level of MT1-MMP. Thus, MSP-T2 did not affect direct cleavage of the substrate testican-1 by MT1-MMP, whereas TIMP-2 inhibited it even at the level that stimulates proMMP-2 processing. Expression of MSP-T2 in HT1080 cells enhanced MMP-2 activation by endogenous MT1-MMP and caused intensive hydrolysis of collagen gel. Expression of MSP-T2 in U87 glioma cells, which express a trace level of endogenous MT1-MMP, induced MMP-2 activation and enhanced cell-associated protease activity, activation of extracellular signal-regulated kinase, and metastatic ability into chick embryonic liver and lung. MT1-MMP can exert both maximum MMP-2 activation and direct cleavage of substrates with MSP-T2, which cannot be achieved with TIMP-2. These results suggest that MMP-2 activation by MT1-MMP potentially amplifies protease activity, and combination with direct cleavage of substrate causes effective tissue degradation and enhances tumor invasion and metastasis, which highlights the complex role of TIMP-2. MSP-T2 is a unique tool to analyze physiologic and pathologic roles of MMP-2 and MT1-MMP in comparison with TIMP-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although tissue inhibitor of metalloproteinase-2 (TIMP-2) is known to be not only an inhibitor of matrix metalloproteinases (MMP) but also a cofactor for membrane-type 1 MMP (MT1-MMP)-mediated MMP-2 activation, it is still unclear how TIMP-2 regulates MMP-2 activation and cleavage of substrates by MT1-MMP. In the present study we examined the levels of cell-surface MT1-MMP, MMP-2 activation and cleavage of MT1-MMP substrates in 293T cells transfected with the MT1-MMP and TIMP-2 genes. Co-expression of TIMP-2 at an appropriate level increased the level of cell-surface MT1-MMP, both the TIMP-2-bound and free forms, and generated processed MMP-2 with gelatin-degrading activity. In contrast, MT1-MMP substrates testican-1 and syndecan-1 were cleaved by the cells expressing MT1-MMP, which was inhibited by TIMP-2 even at levels that stimulate MMP-2 activation. These results suggest that TIMP-2 environment determines MT1-MMP substrate choice between direct cleavage of its own substrates and MMP-2 activation.