945 resultados para Mathematical Techniques - Integration
Resumo:
The nucleation and growth model, which is usually applied to switching phenomena, is adapted for explaining surface potential measurements on the P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) copolymer obtained in a constant current corona triode. It is shown that the growth is one-dimensional and that the nucleation rate is unimportant, probably because surface potential measurements take much longer than the switching ones. The surface potential data can therefore be accounted for by a growth model in which the velocity of growth varies exponentially with the electric field. Since hysteresis loops can be obtained from surface potential measurements, it is suggested that similar mechanisms can be used when treating switching and hysteresis phenomena, provided that account is taken of the difference in the time scale of the measurements.
Resumo:
This Integration Insight provides a brief overview of the most popular modelling techniques used to analyse complex real-world problems, as well as some less popular but highly relevant techniques. The modelling methods are divided into three categories, with each encompassing a number of methods, as follows: 1) Qualitative Aggregate Models (Soft Systems Methodology, Concept Maps and Mind Mapping, Scenario Planning, Causal (Loop) Diagrams), 2) Quantitative Aggregate Models (Function fitting and Regression, Bayesian Nets, System of differential equations / Dynamical systems, System Dynamics, Evolutionary Algorithms) and 3) Individual Oriented Models (Cellular Automata, Microsimulation, Agent Based Models, Discrete Event Simulation, Social Network
Analysis). Each technique is broadly described with example uses, key attributes and reference material.
Resumo:
This article is the second part of a review of the historical evolution of mathematical models applied in the development of building technology. The first part described the current state of the art and contrasted various models with regard to the applications to conventional buildings and intelligent buildings. It concluded that mathematical techniques adopted in neural networks, expert systems, fuzzy logic and genetic models, that can be used to address model uncertainty, are well suited for modelling intelligent buildings. Despite the progress, the possible future development of intelligent buildings based on the current trends implies some potential limitations of these models. This paper attempts to uncover the fundamental limitations inherent in these models and provides some insights into future modelling directions, with special focus on the techniques of semiotics and chaos. Finally, by demonstrating an example of an intelligent building system with the mathematical models that have been developed for such a system, this review addresses the influences of mathematical models as a potential aid in developing intelligent buildings and perhaps even more advanced buildings for the future.
Resumo:
Straightforward mathematical techniques are used innovatively to form a coherent theoretical system to deal with chemical equilibrium problems. For a systematic theory it is necessary to establish a system to connect different concepts. This paper shows the usefulness and consistence of the system by applications of the theorems introduced previously. Some theorems are shown somewhat unexpectedly to be mathematically correlated and relationships are obtained in a coherent manner. It has been shown that theorem 1 plays an important part in interconnecting most of the theorems. The usefulness of theorem 2 is illustrated by proving it to be consistent with theorem 3. A set of uniform mathematical expressions are associated with theorem 3. A variety of mathematical techniques based on theorems 1–3 are shown to establish the direction of equilibrium shift. The equilibrium properties expressed in initial and equilibrium conditions are shown to be connected via theorem 5. Theorem 6 is connected with theorem 4 through the mathematical representation of theorem 1.
Resumo:
Smart meters are becoming more ubiquitous as governments aim to reduce the risks to the energy supply as the world moves toward a low carbon economy. The data they provide could create a wealth of information to better understand customer behaviour. However at the household, and even the low voltage (LV) substation level, energy demand is extremely volatile, irregular and noisy compared to the demand at the high voltage (HV) substation level. Novel analytical methods will be required in order to optimise the use of household level data. In this paper we briefly outline some mathematical techniques which will play a key role in better understanding the customer's behaviour and create solutions for supporting the network at the LV substation level.
Resumo:
Continuum mechanics provides a mathematical framework for modelling the physical stresses experienced by a material. Recent studies show that physical stresses play an important role in a wide variety of biological processes, including dermal wound healing, soft tissue growth and morphogenesis. Thus, continuum mechanics is a useful mathematical tool for modelling a range of biological phenomena. Unfortunately, classical continuum mechanics is of limited use in biomechanical problems. As cells refashion the �bres that make up a soft tissue, they sometimes alter the tissue's fundamental mechanical structure. Advanced mathematical techniques are needed in order to accurately describe this sort of biological `plasticity'. A number of such techniques have been proposed by previous researchers. However, models that incorporate biological plasticity tend to be very complicated. Furthermore, these models are often di�cult to apply and/or interpret, making them of limited practical use. One alternative approach is to ignore biological plasticity and use classical continuum mechanics. For example, most mechanochemical models of dermal wound healing assume that the skin behaves as a linear viscoelastic solid. Our analysis indicates that this assumption leads to physically unrealistic results. In this thesis we present a novel and practical approach to modelling biological plasticity. Our principal aim is to combine the simplicity of classical linear models with the sophistication of plasticity theory. To achieve this, we perform a careful mathematical analysis of the concept of a `zero stress state'. This leads us to a formal de�nition of strain that is appropriate for materials that undergo internal remodelling. Next, we consider the evolution of the zero stress state over time. We develop a novel theory of `morphoelasticity' that can be used to describe how the zero stress state changes in response to growth and remodelling. Importantly, our work yields an intuitive and internally consistent way of modelling anisotropic growth. Furthermore, we are able to use our theory of morphoelasticity to develop evolution equations for elastic strain. We also present some applications of our theory. For example, we show that morphoelasticity can be used to obtain a constitutive law for a Maxwell viscoelastic uid that is valid at large deformation gradients. Similarly, we analyse a morphoelastic model of the stress-dependent growth of a tumour spheroid. This work leads to the prediction that a tumour spheroid will always be in a state of radial compression and circumferential tension. Finally, we conclude by presenting a novel mechanochemical model of dermal wound healing that takes into account the plasticity of the healing skin.
Resumo:
In this chapter we continue the exposition of crypto topics that was begun in the previous chapter. This chapter covers secret sharing, threshold cryptography, signature schemes, and finally quantum key distribution and quantum cryptography. As in the previous chapter, we have focused only on the essentials of each topic. We have selected in the bibliography a list of representative items, which can be consulted for further details. First we give a synopsis of the topics that are discussed in this chapter. Secret sharing is concerned with the problem of how to distribute a secret among a group of participating individuals, or entities, so that only predesignated collections of individuals are able to recreate the secret by collectively combining the parts of the secret that were allocated to them. There are numerous applications of secret-sharing schemes in practice. One example of secret sharing occurs in banking. For instance, the combination to a vault may be distributed in such a way that only specified collections of employees can open the vault by pooling their portions of the combination. In this way the authority to initiate an action, e.g., the opening of a bank vault, is divided for the purposes of providing security and for added functionality, such as auditing, if required. Threshold cryptography is a relatively recently studied area of cryptography. It deals with situations where the authority to initiate or perform cryptographic operations is distributed among a group of individuals. Many of the standard operations of single-user cryptography have counterparts in threshold cryptography. Signature schemes deal with the problem of generating and verifying electronic) signatures for documents.Asubclass of signature schemes is concerned with the shared-generation and the sharedverification of signatures, where a collaborating group of individuals are required to perform these actions. A new paradigm of security has recently been introduced into cryptography with the emergence of the ideas of quantum key distribution and quantum cryptography. While classical cryptography employs various mathematical techniques to restrict eavesdroppers from learning the contents of encrypted messages, in quantum cryptography the information is protected by the laws of physics.
Resumo:
The exchange of physical forces in both cell-cell and cell-matrix interactions play a significant role in a variety of physiological and pathological processes, such as cell migration, cancer metastasis, inflammation and wound healing. Therefore, great interest exists in accurately quantifying the forces that cells exert on their substrate during migration. Traction Force Microscopy (TFM) is the most widely used method for measuring cell traction forces. Several mathematical techniques have been developed to estimate forces from TFM experiments. However, certain simplifications are commonly assumed, such as linear elasticity of the materials and/or free geometries, which in some cases may lead to inaccurate results. Here, cellular forces are numerically estimated by solving a minimization problem that combines multiple non-linear FEM solutions. Our simulations, free from constraints on the geometrical and the mechanical conditions, show that forces are predicted with higher accuracy than when using the standard approaches.
Resumo:
Bounds on the expectation and variance of errors at the output of a multilayer feedforward neural network with perturbed weights and inputs are derived. It is assumed that errors in weights and inputs to the network are statistically independent and small. The bounds obtained are applicable to both digital and analogue network implementations and are shown to be of practical value.
Resumo:
The free convection problem with nonuniform gravity finds applications in several fields. For example, centrifugal gravity fieldsarisein many rotating machinery applications. A gravity field is also created artificially in an orbital space station by rotation. The effect of nonuniform gravity due to the rotation of isothermal or nonisothermal plates has been studied by several authors [l-5] using various mathematical techniques.
Resumo:
The Minimum Description Length (MDL) principle is a general, well-founded theoretical formalization of statistical modeling. The most important notion of MDL is the stochastic complexity, which can be interpreted as the shortest description length of a given sample of data relative to a model class. The exact definition of the stochastic complexity has gone through several evolutionary steps. The latest instantation is based on the so-called Normalized Maximum Likelihood (NML) distribution which has been shown to possess several important theoretical properties. However, the applications of this modern version of the MDL have been quite rare because of computational complexity problems, i.e., for discrete data, the definition of NML involves an exponential sum, and in the case of continuous data, a multi-dimensional integral usually infeasible to evaluate or even approximate accurately. In this doctoral dissertation, we present mathematical techniques for computing NML efficiently for some model families involving discrete data. We also show how these techniques can be used to apply MDL in two practical applications: histogram density estimation and clustering of multi-dimensional data.
Resumo:
Homogenization of partial differential equations is relatively a new area and has tremendous applications in various branches of engineering sciences like: material science,porous media, study of vibrations of thin structures, composite materials to name a few. Though the material scientists and others had reasonable idea about the homogenization process, it was lacking a good mathematical theory till early seventies. The first proper mathematical procedure was developed in the seventies and later in the last 30 years or so it has flourished in various ways both application wise and mathematically. This is not a full survey article and on the other hand we will not be concentrating on a specialized problem. Indeed, we do indicate certain specialized problems of our interest without much details and that is not the main theme of the article. I plan to give an introductory presentation with the aim of catering to a wider audience. We go through few examples to understand homogenization procedure in a general perspective together with applications. We also present various mathematical techniques available and if possible some details about some of the techniques. A possible definition of homogenization would be that it is a process of understanding a heterogeneous (in-homogeneous) media, where the heterogeneties are at the microscopic level, like in composite materials, by a homogeneous media. In other words, one would like to obtain a homogeneous description of a highly oscillating in-homogeneous media. We also present other generalizations to non linear problems, porous media and so on. Finally, we will like to see a closely related issue of optimal bounds which itself is an independent area of research.