949 resultados para Materials and the technique
Resumo:
The aim of this study was to evaluate the effects of different litter materials on litter compaction, broiler feathering and the incidence of carcass lesions. In the experiment, 3240 one-day-old Ross® chicks were selected by sex and distributed according to a completely randomized experimental design in a 2 x 6 factorial arrangement (two sex and six litter materials). The following litter materials were used: wood shavings, rice husks, chopped Napier grass, 50% sugar cane bagasse plus 50% wood shavings, 50% sugar cane bagasse plus 50% rice husks, and pure sugar cane bagasse. Litter compaction was weekly assessed using a penetrometer. on days 21, 35 and 42 of the experimental period, feathering on the back and legs was scored according to a 0 - 10 scale. on day 42, birds were slaughtered and the presence of bruises, scratches and footpad lesions was recorded. Litter material had no effect on bird feathering. Carcass lesions (scratches, bruises and footpad lesions) were influenced by the litter material evaluated. Birds reared on sugarcane bagasse and chopped Napier grass presented more scratches, bruises and footpad lesions than the others. Dermatitis was more evident in birds reared on sugarcane bagasse, chopped Napier grass and the combination of litter materials. It was found that males presented higher incidence of dermatitis and footpad lesions than females. Each litter material presented different compaction degrees, which increased along the experimental period. Sugarcane bagasse, chopped Napier grass and the combination of bedding materials presented the highest degree of compaction, compared with wood shavings and rice husks.
Resumo:
Thesis (M.A.)--Univ. of California. Dec. 1922.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"No. 117."
Resumo:
"No. 164."
Resumo:
Earthen building materials bear interesting environmental advantages and are the most appropriate to conserve historical earth constructions. To improve mechanical properties, these materials are often stabilized with cement or lime, but the impact of the stabilizers on the water transport properties, which are also critical, has been very rarely evaluated. We have tested four earth-based repair mortars applied on three distinct and representative rammed earth surfaces. Three mortars are based on earth collected from rammed earth buildings in south of Portugal and the fourth mortar is based on a commercial clayish earth. The main objective of the work was over the commercial earth mortar, applied stabilized and not stabilized on the three rammed earth surfaces to repair, to assess the influence of the stabilizers. The other three earth mortars (not stabilized) were applied on each type of rammed earth, representing the repair only made with local materials. The four unstabilized earth materials depicted nonlinear dependence on t1/2 during capillary suction. This behaviour was probably due to clay swelling. Stabilization with any of the four tested binders enabled the linear dependence of t1/2 expected from Washburn's equation, probably because the swelling did not take place in this case. However, the stabilizers also increased significantly the capillary suction and the capillary porosity of the materials. This means that, in addition to increasing the carbon footprint, stabilizers like cement and lime have functional disadvantages that discourage its use in repair mortars for raw earth construction.
Resumo:
Dissertação para obtenção do Grau de Mestre em Conservação e Restauro
Resumo:
The work activities reported in this PhD thesis regard the functionalization of composite materials and the realization of energy harvesting devices by using nanostructured piezoelectric materials, which can be integrated in the composite without affecting its mechanical properties. The self-sensing composite materials were fabricated by interleaving between the plies of the laminate the piezoelectric elements. The problem of negatively impacting on the mechanical properties of the hosting structure was addressed by shaping the piezoelectric materials in appropriate ways. In the case of polymeric piezoelectric materials, the electrospinning technique allowed to produce highly-porous nanofibrous membranes which can be immerged in the hosting matrix without inducing delamination risk. The flexibility of the polymers was exploited also for the production of flexible tactile sensors. The sensing performances of the specimens were evaluated also in terms of lifetime with fatigue tests. In the case of ceramic piezo-materials, the production and the interleaving of nanometric piezoelectric powder limitedly affected the impact resistance of the laminate, which showed enhanced sensing properties. In addition to this, a model was proposed to predict the piezoelectric response of the self-sensing composite materials as function of the amount of the piezo-phase within the laminate and to adapt its sensing functionalities also for quasi-static loads. Indeed, one final application of the work was to integrate the piezoelectric nanofibers in the sole of a prosthetic foot in order to detect the walking cycle, which has a period in the order of 1 second. In the end, the energy harvesting capabilities of the piezoelectric materials were investigated, with the aim to design wearable devices able to collect energy from the environment and from the body movements. The research activities focused both on the power transfer capability to an external load and the charging of an energy storage unit, like, e.g., a supercapacitor.
Resumo:
Ethnopedological studies have mainly focused on agricultural land uses and associated practices. Nevertheless, peasant and indigenous populations use soil and land resources for a number of additional purposes, including pottery. In the present study, we describe and analyze folk knowledge related to the use of soils in non-industrial pottery making by peasant potters, in the municipality of Altinho, Pernambuco State, semiarid region at Brazil. Ethnoscientific techniques were used to record local knowledge, with an emphasis on describing the soil materials recognized by the potters, the properties they used to identify those soil materials, and the criteria employed by them to differentiate and relate such materials. The potters recognized three categories of soil materials: “terra” (earth), “barro” (clay) and, “piçarro” (soft rock). The multi-layered arrangement of these materials within the soil profiles was similar to the arrangement of the soil horizon described by formal pedologists. “Barro vermelho” (red clay) was considered by potters as the principal ceramic resource. The potters followed morphological and utilitarian criteria in distinguishing the different soil materials. Soils from all of these sites were sodium-affected Alfisols and correspond to Typic Albaqualf and Typic Natraqualf in the Soil Taxonomy (Soil Survey Staff, 2010).
Resumo:
Objective. The general aim of this article is to describe the state-of-the-art of biocompatibility testing for dental materials, and present new strategies for improving operative dentistry techniques and the biocompatibility of dental materials as they relate to their interaction with the dentin-pulp complex.Methods. The literature was reviewed focusing on articles related to biocompatibilty testing, the dentin-pulp complex and new strategies and materials for operative dentistry. For this purpose, the PubMed database as well as 118 articles published in English from 1939 to 2014 were searched. Data concerning types of biological tests and standardization of in vitro and in vivo protocols employed to evaluate the cytotoxicity and biocompatibility of dental materials were also searched from the US Food and Drug Administration (FDA), International Standards Organization (ISO) and American National Standards Institute (ANSI).Results. While there is an ongoing search for feasible strategies in the molecular approach to direct the repair or regeneration of structures that form the oral tissues, it is necessary for professionals to master the clinical therapies available at present. In turn, these techniques must be applied based on knowledge of the morphological and physiological characteristics of the tissues involved, as well as the physical, mechanical and biologic properties of the biomaterials recommended for each specific situation. Thus, particularly within modern esthetic restorative dentistry, the use of minimally invasive operative techniques associated with the use of dental materials with excellent properties and scientifically proved by means of clinical and laboratory studies must be a routine for dentists. This professional and responsible attitude will certainly result in greater possibility of achieving clinical success, benefiting patients and dentists themselves.Signcance. This article provides a general and critical view of the relations that permeate the interaction between dental materials and the dentin-pulp complex, and establish real possibilities and strategies that favor biocompatibility of the present and new products used in Dentistry, which will certainly benefit clinicians and their patients. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Hydrogels, water swollen polymer matrices, have been utilised in many biomedical applications, as there is the potential to manipulate the properties for a given application by changing the chemical structure of the constituent monomers The eye provides an excellent site to examne the interaction between a synthetic material and a complex biological fluid without invasive surgery. There is a need for the development of new synthetic hydrogels for use in the anterior eye, Three applications of hydrogels in the eye were considered in this thesis. For some patients, the only hope of any visual improvement lies in the use of an artificial cornea, or keratoprosthesis, Preliminary investigations of a series of simple homogeneous hydrogel copolymers revealed that the mechanical properties required to withstand surgery and in eye stresses, were not achieved This lead to work on the development of semi-interpenetrating polymer networks based on the aforementioned copolymers, Manufacture of the device and cell response were also studied. Lasers have been employed in ocular surgery to correct refractive defects. If an irregular surface is ablated, an irregular surface is obtained. A hydrogel system was investigated that could be applied to the eye prior to ablation to create a smooth surface. Factors that may influence ablation rate were explored, Soft contact lenses can be used as a probe to study the interaction between synthetic materials and the biological constituents of tears. This has lead to the development of many sensitive analytical techniques for protein and lipid deposition, one of which is fluorescence spectrophotometry. Various commercially available soft contact lenses were worn for different periods of time and then analysed for protein and lipid deposition using fluorescence spectrophotometry, The influence of water content, degree of ionicity and the lens material on the level and type of deposition was investigated.
Resumo:
This PhD work arises from the necessity to give a contribution to the energy saving field, regarding automotive applications. The aim was to produce a multidisciplinary work to show how much important is to consider different aspects of an electric car realization: from innovative materials to cutting-edge battery thermal management systems (BTMSs), also dealing with the life cycle assessment (LCA) of the battery packs (BPs). Regarding the materials, it has been chosen to focus on carbon fiber composites as their use allows realizing light products with great mechanical properties. Processes and methods to produce carbon fiber goods have been analysed with a special attention on the university solar car Emilia 4. The work proceeds dealing with the common BTMSs on the market (air-cooled, cooling plates, heat pipes) and then it deepens some of the most innovative systems such as the PCM-based BTMSs after a previous experimental campaign to characterize the PCMs. After that, a complex experimental campaign regarding the PCM-based BTMSs has been carried on, considering both uninsulated and insulated systems. About the first category the tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs; the insulated tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs and both of these systems equipped with a liquid cooling circuit. The choice of lighter building materials and the optimization of the BTMS are strategies which helps in reducing the energy consumption, considering both the energy required by the car to move and the BP state of health (SOH). Focusing on this last factor, a clear explanation regarding the importance of taking care about the SOH is given by the analysis of a BP production energy consumption. This is why a final dissertation about the life cycle assessment (LCA) of a BP unit has been presented in this thesis.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC