960 resultados para Materiales compuestos de matriz polimérica
Resumo:
Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) UANL, 2013.
Resumo:
208 p.
Resumo:
El uso de materiales compuestos de matriz polimérica (FRP) emerge como alternativa al hormigón convencionalmente armado con acero debido a la mayor resistencia a la corrosión de dichos materiales. El presente estudio investiga el comportamiento en servicio de vigas de hormigón armadas con barras de FRP mediante un análisis teórico y experimental. Se presentan los resultados experimentales de veintiséis vigas de hormigón armadas con barras de material compuesto de fibra de vidrio (GFRP) y una armada con acero, todas ellas ensayadas a flexión de cuatro puntos. Los resultados experimentales son analizados y comparados con algunos de los modelos de predicción más significativos de flechas y fisuración, observándose, en general, una predicción adecuada del comportamiento experimental hasta cargas de servicio. El análisis de sección fisurada (CSA) estima la carga última con precisión, aunque se registra un incremento de la flecha experimental para cargas superiores a las de servicio. Esta diferencia se atribuye a la influencia de las deformaciones por esfuerzo cortante y se calcula experimentalmente. Se presentan los aspectos principales que influyen en los estados límites de servicio: tensiones de los materiales, ancho máximo de fisura y flecha máxima permitida. Se presenta una metodología para el diseño de dichos elementos bajo las condiciones de servicio. El procedimiento presentado permite optimizar las dimensiones de la sección respecto a metodologías más generales.
Resumo:
La aplicación de materiales compuestos de matriz polimérica reforzados mediante fibras largas (FRP, Fiber Reinforced Plastic), está en gradual crecimiento debido a las buenas propiedades específicas y a la flexibilidad en el diseño. Uno de los mayores consumidores es la industria aeroespacial, dado que la aplicación de estos materiales tiene claros beneficios económicos y medioambientales. Cuando los materiales compuestos se aplican en componentes estructurales, se inicia un programa de diseño donde se combinan ensayos reales y técnicas de análisis. El desarrollo de herramientas de análisis fiables que permiten comprender el comportamiento mecánico de la estructura, así como reemplazar muchos, pero no todos, los ensayos reales, es de claro interés. Susceptibilidad al daño debido a cargas de impacto fuera del plano es uno de los aspectos de más importancia que se tienen en cuenta durante el proceso de diseño de estructuras de material compuesto. La falta de conocimiento de los efectos del impacto en estas estructuras es un factor que limita el uso de estos materiales. Por lo tanto, el desarrollo de modelos de ensayo virtual mecánico para analizar la resistencia a impacto de una estructura es de gran interés, pero aún más, la predicción de la resistencia residual después del impacto. En este sentido, el presente trabajo abarca un amplio rango de análisis de eventos de impacto a baja velocidad en placas laminadas de material compuesto, monolíticas, planas, rectangulares, y con secuencias de apilamiento convencionales. Teniendo en cuenta que el principal objetivo del presente trabajo es la predicción de la resistencia residual a compresión, diferentes tareas se llevan a cabo para favorecer el adecuado análisis del problema. Los temas que se desarrollan son: la descripción analítica del impacto, el diseño y la realización de un plan de ensayos experimentales, la formulación e implementación de modelos constitutivos para la descripción del comportamiento del material, y el desarrollo de ensayos virtuales basados en modelos de elementos finitos en los que se usan los modelos constitutivos implementados.
Resumo:
Tradicionalmente, la fabricación de materiales compuestos de altas prestaciones se lleva a cabo en autoclave mediante la consolidación de preimpregnados a través de la aplicación simultánea de altas presiones y temperatura. Las elevadas presiones empleadas en autoclave reducen la porosidad de los componentes garantizando unas buenas propiedades mecánicas. Sin embargo, este sistema de fabricación conlleva tiempos de producción largos y grandes inversiones en equipamiento lo que restringe su aplicación a otros sectores alejados del sector aeronáutico. Este hecho ha generado una creciente demanda de sistemas de fabricación alternativos al autoclave. Aunque estos sistemas son capaces de reducir los tiempos de producción y el gasto energético, por lo general, dan lugar a materiales con menores prestaciones mecánicas debido a que se reduce la compactación del material al aplicar presiones mas bajas y, por tanto, la fracción volumétrica de fibras, y disminuye el control de la porosidad durante el proceso. Los modelos numéricos existentes permiten conocer los fundamentos de los mecanismos de crecimiento de poros durante la fabricación de materiales compuestos de matriz polimérica mediante autoclave. Dichos modelos analizan el comportamiento de pequeños poros esféricos embebidos en una resina viscosa. Su validez no ha sido probada, sin embargo, para la morfología típica observada en materiales compuestos fabricados fuera de autoclave, consistente en poros cilíndricos y alargados embebidos en resina y rodeados de fibras continuas. Por otro lado, aunque existe una clara evidencia experimental del efecto pernicioso de la porosidad en las prestaciones mecánicas de los materiales compuestos, no existe información detallada sobre la influencia de las condiciones de procesado en la forma, fracción volumétrica y distribución espacial de los poros en los materiales compuestos. Las técnicas de análisis convencionales para la caracterización microestructural de los materiales compuestos proporcionan información en dos dimensiones (2D) (microscopía óptica y electrónica, radiografía de rayos X, ultrasonidos, emisión acústica) y sólo algunas son adecuadas para el análisis de la porosidad. En esta tesis, se ha analizado el efecto de ciclo de curado en el desarrollo de los poros durante la consolidación de preimpregnados Hexply AS4/8552 a bajas presiones mediante moldeo por compresión, en paneles unidireccionales y multiaxiales utilizando tres ciclos de curado diferentes. Dichos ciclos fueron cuidadosamente diseñados de acuerdo a la caracterización térmica y reológica de los preimpregnados. La fracción volumétrica de poros, su forma y distribución espacial se analizaron en detalle mediante tomografía de rayos X. Esta técnica no destructiva ha demostrado su capacidad para analizar la microestructura de materiales compuestos. Se observó, que la porosidad depende en gran medida de la evolución de la viscosidad dinámica a lo largo del ciclo y que la mayoría de la porosidad inicial procedía del aire atrapado durante el apilamiento de las láminas de preimpregnado. En el caso de los laminados multiaxiales, la porosidad también se vio afectada por la secuencia de apilamiento. En general, los poros tenían forma cilíndrica y se estaban orientados en la dirección de las fibras. Además, la proyección de la población de poros a lo largo de la dirección de la fibra reveló la existencia de una estructura celular de un diámetro aproximado de 1 mm. Las paredes de las celdas correspondían con regiones con mayor densidad de fibra mientras que los poros se concentraban en el interior de las celdas. Esta distribución de la porosidad es el resultado de una consolidación no homogenea. Toda esta información es crítica a la hora de optimizar las condiciones de procesado y proporcionar datos de partida para desarrollar herramientas de simulación de los procesos de fabricación de materiales compuestos fuera de autoclave. Adicionalmente, se determinaron ciertas propiedades mecánicas dependientes de la matriz termoestable con objeto de establecer la relación entre condiciones de procesado y las prestaciones mecánicas. En el caso de los laminados unidireccionales, la resistencia interlaminar depende de la porosidad para fracciones volumétricas de poros superiores 1%. Las mismas tendencias se observaron en el caso de GIIc mientras GIc no se vio afectada por la porosidad. En el caso de los laminados multiaxiales se evaluó la influencia de la porosidad en la resistencia a compresión, la resistencia a impacto a baja velocidad y la resistencia a copresión después de impacto. La resistencia a compresión se redujo con el contenido en poros, pero éste no influyó significativamente en la resistencia a compresión despues de impacto ya que quedó enmascarada por otros factores como la secuencia de apilamiento o la magnitud del daño generado tras el impacto. Finalmente, el efecto de las condiciones de fabricación en el proceso de compactación mediante moldeo por compresión en laminados unidireccionales fue simulado mediante el método de los elementos finitos en una primera aproximación para simular la fabricación de materiales compuestos fuera de autoclave. Los parámetros del modelo se obtuvieron mediante experimentos térmicos y reológicos del preimpregnado Hexply AS4/8552. Los resultados obtenidos en la predicción de la reducción de espesor durante el proceso de consolidación concordaron razonablemente con los resultados experimentales. Manufacturing of high performance polymer-matrix composites is normally carried out by means of autoclave using prepreg tapes stacked and consolidated under the simultaneous application of pressure and temperature. High autoclave pressures reduce the porosity in the laminate and ensure excellent mechanical properties. However, this manufacturing route is expensive in terms of capital investment and processing time, hindering its application in many industrial sectors. This fact has driven the demand of alternative out-of-autoclave processing routes. These techniques claim to produce composite parts faster and at lower cost but the mechanical performance is also reduced due to the lower fiber content and to the higher porosity. Corrient numerical models are able to simulate the mechanisms of void growth in polymer-matrix composites processed in autoclave. However these models are restricted to small spherical voids surrounded by a viscous resin. Their validity is not proved for long cylindrical voids in a viscous matrix surrounded by aligned fibers, the standard morphology observed in out-of-autoclave composites. In addition, there is an experimental evidence of the detrimental effect of voids on the mechanical performance of composites but, there is detailed information regarding the influence of curing conditions on the actual volume fraction, shape and spatial distribution of voids within the laminate. The standard techniques of microstructural characterization of composites (optical or electron microscopy, X-ray radiography, ultrasonics) provide information in two dimensions and are not always suitable to determine the porosity or void population. Moreover, they can not provide 3D information. The effect of curing cycle on the development of voids during consolidation of AS4/8552 prepregs at low pressure by compression molding was studied in unidirectional and multiaxial panels. They were manufactured using three different curing cycles carefully designed following the rheological and thermal analysis of the raw prepregs. The void volume fraction, shape and spatial distribution were analyzed in detail by means of X-ray computed microtomography, which has demonstrated its potential for analyzing the microstructural features of composites. It was demonstrated that the final void volume fraction depended on the evolution of the dynamic viscosity throughout the cycle. Most of the initial voids were the result of air entrapment and wrinkles created during lay-up. Differences in the final void volume fraction depended on the processing conditions for unidirectional and multiaxial panels. Voids were rod-like shaped and were oriented parallel to the fibers and concentrated in channels along the fiber orientation. X-ray computer tomography analysis of voids along the fiber direction showed a cellular structure with an approximate cell diameter of 1 mm. The cell walls were fiber-rich regions and porosity was localized at the center of the cells. This porosity distribution within the laminate was the result of inhomogeneous consolidation. This information is critical to optimize processing parameters and to provide inputs for virtual testing and virtual processing tools. In addition, the matrix-controlled mechanical properties of the panels were measured in order to establish the relationship between processing conditions and mechanical performance. The interlaminar shear strength (ILSS) and the interlaminar toughness (GIc and GIIc) were selected to evaluate the effect of porosity on the mechanical performance of unidirectional panels. The ILSS was strongly affected by the porosity when the void contents was higher than 1%. The same trends were observed in the case of GIIc while GIc was insensitive to the void volume fraction. Additionally, the mechanical performance of multiaxial panels in compression, low velocity impact and compression after impact (CAI) was measured to address the effect of processing conditions. The compressive strength decreased with porosity and ply-clustering. However, the porosity did not influence the impact resistance and the coompression after impact strength because the effect of porosity was masked by other factors as the damage due to impact or the laminate lay-up. Finally, the effect of the processing conditions on the compaction behavior of unidirectional AS4/8552 panels manufactured by compression moulding was simulated using the finite element method, as a first approximation to more complex and accurate models for out-of autoclave curing and consolidation of composite laminates. The model parameters were obtained from rheological and thermo-mechanical experiments carried out in raw prepreg samples. The predictions of the thickness change during consolidation were in reasonable agreement with the experimental results.
Resumo:
El plástico se ha convertido en el material del siglo XXI. Se adapta a múltiples aplicaciones, por eso se emplea para todo tipo de propósitos, entre los cuales destaca el empaquetado por su versatilidad, flexibilidad y durabilidad. Un efecto directo de su continuo uso es la producción de residuos poliméricos, que tras su utilización, se desechan. A partir de ese momento, solo existen dos vías de acción: reciclado y vertido. El vertido de residuos se ha convertido en un grave problema del día a día. En consecuencia, se deben tomar medidas para evitar su acumulación, que implica grandes problemas medioambientales que afectan tanto a personas como a fauna y flora. Por consiguiente, para evitar el desaprovechamiento de una buena parte de los residuos, de aquellos que son plásticos, se lleva a cabo su reciclado. Existen tres tipos de reciclado para los materiales poliméricos: el mecánico o convencional, el químico y la valorización energética. El más sostenible de todos ellos es el reciclado mecánico que además es el empleado para la elaboración de las probetas de este estudio. El reciclado convencional posee varias etapas, entre las cuales destacan fundir el plástico y procesarlo posteriormente. El producto final aparece en forma de pellets, que pueden ser transformados según el uso ulterior. El polímero generado posee una calidad inferior a la de los materiales vírgenes, dado que durante su utilización ha podido ser contaminado por otras substancias. Por tanto, no puede emplearse para muchos de sus pasados usos si no es reforzado con algún otro material. Es entonces cuando surgen los ecocomposites o biocomposites. Los ecocomposites son unos materiales compuestos de matriz polimérica, que presentan especiales ventajas medioambientales, porque utilizan refuerzos celulósicos de fuentes renovables y/o matrices de plásticos reciclados. En nuestro caso, la matriz es una mezcla de residuos plásticos agrarios (RAP) y urbanos, que principalmente están formados por polietileno de alta densidad (HDPE). Por sí solos estos plásticos reciclados, no poseen las cualidades necesarias para su utilización. Por consiguiente, se refuerzan con fibras de celulosa. Estas hebras añadidas también son residuales ya que carecen de las propiedades adecuadas para la fabricación de papel y, en lugar de ser incineradas o desechadas, se emplean en los ecocomposites como ayuda para soportar los esfuerzos mecánicos. Otro beneficio medioambiental del uso de la celulosa, es que hace que los ecocomposites sean más biodegradables en comparación con las fibras minerales que se añaden en los otros composites. Cabe mencionar que, al tratarse de un material totalmente reciclado, también genera una serie de ventajas económicas y sociales. El reciclado mecánico necesita de trabajadores que lleven a cabo la labor. De este modo, aparecen nuevos puestos de trabajo que dan solución a problemas sociales de la población. El reciclado de plásticos irá aumentando durante los próximos años dado que en 2014 la Comunidad Europea fijó como objetivo una economía circular que implica procesar todos los residuos para evitar su acumulación. En la actualidad, aún no se reciclan gran cantidad de plásticos agrarios. Sin embargo, con este compromiso se espera un aumento del volumen de PE agrícola reciclado mecánicamente, ya que el origen del material obtenido a partir de ellos es ecológico y favorece el cuidado del medio ambiente, al emplear materiales de desecho en la generación de los nuevos. Combinando los plásticos reciclados y la celulosa, se crea un material respetuoso con el medio ambiente. No obstante, existe un motivo mayor para su fabricación: se trata de un compuesto con propiedades mecánicas optimizadas que se adapta a numerosas aplicaciones como mobiliario urbano, señales de tráfico… Sus características aúnan los beneficios de unir ambos materiales. Por un lado, la baja densidad, las posibilidades de reciclado y la alta resistencia al impacto aportadas por el plástico. Por el otro, las hebras celulósicas mejoran notablemente el módulo de Young, la rigidez y el límite de tensión que son capaces de soportar con respecto a probetas de misma forma pero sin fibras. Estas propiedades no son las únicas que se modifican al combinar las dos substancias. El refuerzo, al tratarse de un material hidrófilo, tenderá a atrapar la humedad ambiental. Como consecuencia, se producirá un hinchamiento que es posible que repercuta en la estabilidad dimensional del material durante su uso. Asimismo, si la celulosa está en contacto continuo con agua, modifica su naturaleza ya que se producen una serie de cambios en su estructura. El agua genera también la rotura de las interacciones fibra-matriz en la interfase del material compuesto, lo que reduce grandemente las propiedades del ecocomposite. Así pues, la absorción de agua es uno de los principales problemas de estos materiales y limita sus aplicaciones y también la reciclabilidad de los residuos celulósicos y plásticos. Por lo tanto, el principal objetivo de este proyecto es la caracterización tanto de la cinética como del mecanismo de la absorción de agua en los ecocomposites a través de varias técnicas y ensayos siempre con el fin último de reducir la absorción de agua y mejorar las propiedades y las aplicaciones de estos materiales reciclados. Se estudiaron ecocomposites obtenidos a partir de residuos plásticos agrarios y urbanos, con una cantidad variable de celulosa residual, entre 25 y 35%. A algunos de ellos se les había añadido un peróxido orgánico en proporción del 0,025% o 0,05% en peso. Una parte de los materiales había sido sometida a un envejecimiento acelerado de 100, 250 o 500 horas en cámara climática, donde se exponen a calor y humedad. La proporción no constante de celulosa se empleó para descubrir cuánto afecta su variación en la absorción de agua. El peróxido estaba presente como ayuda para entrecruzar la matriz con el refuerzo, que ya se había comprobado que mejoraba las propiedades mecánicas del material, y se pretendía investigar si también podía causar una mejora en la absorción de agua, o bien suponía un empeoramiento. Por último, se pretendía estudiar si el envejecimiento de estos materiales altera la absorción de agua. La absorción se caracterizó principalmente a través de tres procedimientos, todos ellos basados en la medición de ciertas propiedades tras la inmersión de las muestras en viales con agua destilada. Por un lado, se controló la absorción midiendo la ganancia de masa de las muestras mediante una balanza analítica. Por otro lado, se midió el hinchamiento de las probetas a lo largo del tiempo. Finalmente, se caracterizó el agua absorbida y se midió la absorción mediante espectrofotometría infrarroja por transformada de Fourier (FTIR), lo que suministró información sobre los tipos de agua absorbida y los mecanismos de absorción. En el estudio del hinchamiento y de la absorción por gravimetría se tomaron todas las muestras, con una y dos replicaciones. Para la espectrofotometría se analizaron los filmes de código 43500, 43505, 43520 y 43525. La absorción de agua es un fenómeno que se puede explicar en muchos casos a través de la segunda ley de Fick. Para poder emplear esta ley, se toman como hipótesis que la difusión es no estacionaria, la presión y la temperatura son constantes y se trata de difusión unidireccional. Para la aplicación de esta teoría, es necesario que las muestras sean láminas bidimensionales de espesor despreciable. Los coeficientes de difusión se pueden calcular mediante una serie de métodos propuestos por Crank en The Mathematics of Diffusion [5] que recopilan soluciones a esta segunda ley de Fick. La absorción de agua fue aumentando con el tiempo. Inicialmente, el gradiente es superior; esto es, se absorbió más durante las primeras horas de inmersión. Para que la difusión sea Fickiana, el proceso debe ser reversible y alcanzarse un valor de equilibrio de absorción. Nuestros resultados indican que esto no se cumple para largos tiempos de inmersión ya que la teoría predice que la masa absorbida tiende a un valor constante en el equilibrio, mientras que los datos experimentales muestran una tendencia de la absorción a crecer indefinidamente Para tiempos cortos inferiores a 50h, al tratarse de pocas horas de inmersión, el material no se degrada, por lo que el proceso puede describirse como Fickiano. Se calcularon los coeficientes de difusión aparentes y valor estable de cantidad de agua al que tiende la absorción cuando el comportamiento es Fickiano. Los resultados indican que la celulosa afecta considerablemente a la absorción, favoreciéndola cuanto mayor es el porcentaje de fibras. Asimismo, el peróxido no tiene un efecto reseñable en la absorción, porque aúna dos efectos contrarios: favorece el entrecruzamiento de la interfase matriz-refuerzo y degrada parcialmente el material, sobre todo las impurezas de polipropileno en el rHDPE. Finalmente, el envejecimiento muestra una tendencia a facilitar la absorción, pero es importante señalar que esta tendencia desaparece cuando se utiliza peróxido en la composición del ecocomposite, por lo que el peróxido puede aumentar la duración del material. Por último, la espectroscopía FTIR fue muy útil para conocer los tipos de agua que se encuentran en el interior del material, ya que el espectro infrarrojo del agua absorbida depende de cómo se encuentre unida al material. La espectroscopía FTIR ha permitido también observar la cinética de absorción de los diferentes tipos de agua por separado. La absorción del agua libre y el agua ligada se describe bien mediante un modelo Fickiano. La bondad del ajuste para un comportamiento Fickiano es alta. Así pues, los resultados obtenidos aportan información sobre la cinética y los mecanismos de absorción de agua y han mostrado que la absorción depende del contenido en celulosa y no empeora por la adición de peróxido. Por el contrario, el peróxido añadido parece reducir la absorción en materiales envejecidos, lo que puede contribuir a aumentar la duración de estos materiales y mejorar así la reciclabilidad de los residuos empleados.
Resumo:
Tesis (Doctor en Ingeniería de Materiales) UANL, 2011.
Resumo:
Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) UANL, 2013.
Resumo:
Tesis (Maestro en Ciencias de la Ingeniería Mecánica con especialidad en Materiales) UANL, 2014.
Resumo:
En el trabajo se definen modelos constitutivos que permiten reproducir el proceso de fallo de estructuras de materiales compuestos en distintas escalas bajo cargas estáticas. Se define un modelo constitutivo para determinar la respuesta de estructuras de materiales compuestos mediante la teoría de laminados. El modelo es validado mediante un programa de ensayos experimentales con probetas con un agujero central geométricamente similares. Se muestra la capacidad del modelo de detectar el efecto tamaño. Se define un modelo constitutivo para materiales transversalmente isótropos bajo estados tridimensionales de tensión. El modelo se valida analizando numéricamente el proceso de agrietamiento de la matriz. Finalmente se desarrolla un modelo analítico para determinar el agrietamiento de la matriz y la delaminación entre las capas.
Resumo:
135 p.
Resumo:
Se desarrolla el procedimiento de diseño en 3D de una embarcación de eslora menor de 24 metros y la posterior determinación de su escantillonado siguiendo las indicaciones de la norma internacional ISO 12215 para la construcción de cascos y escantillones de pequeñas embarcaciones. Se analizan también las ventajas y desventajas de la construcción del casco de un velero con fibra de vidrio y fibra natural de lino. Para llevar a cabo el diseño 3D a partir de los planos 2D de la embarcación se ha utilizado el software Rhinoceros. Los cálculos hidrostáticos, hidrodinámicos y el comportamiento en la mar se han estudiado con el programa Maxsurf, ampliamente utilizado en el sector naval.
Resumo:
Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) U.A.N.L.
Resumo:
Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) UANL, 2012.
Resumo:
Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) UANL, 2013.