997 resultados para Material eletrocatalítico
Resumo:
In this work the degradation of real and synthetic wastewater was studied using electrochemical processes such as oxidation via hydroxyl radicals, mediated oxidation via active chlorine and electrocoagulation. The real effluent used was collected in the decanter tank of the Federal University of Rio Grande do Norte (ETE-UFRN) of Effluent Treatment Plant and the other a textile effluent dye Ácido Blue 113 (AB 113) was synthesized in the laboratory. In the electrochemical process, the effects of anode material, current density, the presence and concentration of chloride as well as the active chlorine species on site generated were evaluated. Electrodes of different compositions, Ti/Pt, Ti/Ru0,3Ti0,7O2, BDD, Pb/PbO2 and Ti/TiO2-nanotubes/PbO2 were used as anodes. These electrodes were subjected to electroanalytical analysis with the goal of checking how happen the anodic and cathodic processes across the concentrations of NaCl and supporting electrolyte used. The potential of oxygen evolution reaction were also checked. The effect of active chlorine species formed under the process efficiency was evaluated by removing the organic matter in the effluent-ETE UFRN. The wastewater treatment ETE-UFRN using Ti/Pt, DDB and Ti/Ru0,3Ti0,7O2 electrodes was evaluated, obtaining good performances. The electrochemical degradation of effluent-UFRN was able to promote the reduction of the concentration of TOC and COD in all tested anodes. However, Ti/Ru0,3Ti0,7O2 showed a considerable degradation due to active chlorine species generated on site. The results obtained from the electrochemical process in the presence of chloride were more satisfactory than those obtained in the absence. The addition of 0.021 M NaCl resulted in a faster removal of organic matter. Secondly, was prepared and characterized the electrode Ti/TiO2-nanotubes/PbO2 according to what the literature reports, however their preparation was to disk (10 cm diameter) with surface area and higher than that described by the same authors, aiming at application to textile effluent AB 113 dye. SEM images were taken to observe the growth of TiO2 nanotubes and confirm the electrodeposition of PbO2. Atomic Force Microscope was also used to confirm the formation of these nanotubes. Furthermore, was tested and found a high electrochemical stability of the electrode Ti/TiO2-nanotubes/PbO2 for applications such as long-term indicating a good electrocatalytic material. The electrochemical oxidation of AB 113 using Ti/Pt, Pb/PbO2 and Ti/TiO2-nanotubes/PbO2 and Al/Al (electrocoagulation) was also studied. However, the best color removal and COD decay were obtained when Ti/TiO2-nanotubes/PbO2 was used as the anode, removing up to 98% of color and 92,5% of COD decay. Analysis of GC/MS were performed in order to identify possible intermediates formed in the degradation of AB 113.
Resumo:
In this work, the treatment of wastewater from the textile industry, containing dyes as Yellow Novacron (YN), Red Remazol BR (RRB) and Blue Novacron CD (NB), and also, the treatment of wastewater from petrochemical industry (produced water) were investigated by anodic oxidation (OA) with platinum anodes supported on titanium (Ti/Pt) and boron-doped diamond (DDB). Definitely, one of the main parameters of this kind of treatment is the type of electrocatalytic material used, since the mechanisms and products of some anodic reactions depend on it. The OA of synthetic effluents containing with RRB, NB and YN were investigated in order to find the best conditions for the removal of color and organic content of the dye. According to the experimental results, the process of OA is suitable for decolorization of wastewaters containing these textile dyes due to electrocatalytic properties of DDB and Pt anodes. Removal of the organic load was more efficient at DDB, in all cases; where the dyes were degraded to aliphatic carboxylic acids at the end of the electrolysis. Energy requirements for the removal of color during OA of solutions of RRB, NB and YN depends mainly on the operating conditions, for example, RRB passes of 3.30 kWh m-3 at 20 mA cm-2 for 4.28 kWh m-3 at 60 mA cm-2 (pH = 1); 15.23 kWh m-3 at 20 mA cm-2 to 24.75 kWh m-3 at 60 mA cm-2 (pH 4.5); 10.80 kWh m-3 at 20 mA cm-2 to 31.5 kWh m-3 at 60 mA cm-2 (pH = 8) (estimated data for volume of treated effluent). On the other hand, in the study of OA of produced water effluent generated by petrochemical industry, galvanostatic electrolysis using DDB led to the complete removal of COD (98%), due to large amounts of hydroxyl radicals and peroxodisulphates generated from the oxidation of water and sulfates in solution, respectively. Thus, the rate of COD removal increases with increasing applied current density (15-60 mAcm-2 ). Moreover, at Pt electrode, approximately 50% removal of the organic load was achieved by applying from 15 to 30 mAcm-2 while 80% of COD removal was achieved for 60 mAcm-2 . Thus, the results obtained in the application of this technology were satisfactory depending on the electrocatalytic materials and operating conditions used for removal of organic load (petrochemical and textile effluents) as well as for the removal of color (in the case of textile effluents). Therefore, the applicability of electrochemical treatment can be considered as a new alternative like pretreatment or treatment of effluents derived from textiles and petrochemical industries.
Resumo:
The textile effluents are a complex mixture of many pollutants that contain high organic loads, severe color and toxic compounds. The high concentration of the textile effluent may cause increased chemical demand (COD) and biochemical (BOD) of oxygen, elevated temperature, acidity or alkalinity, causing damage and environmental problems. In addition to representing a serious threat to human health such effluent is also quite toxic to most aquatic organisms. And for this reason, one must meet the concentration limits for emission sources and sewage system. This study aimed to investigate the performance of electrochemical treatment of a textile effluent for the removal of color, turbidity, dissolved oxygen (DO) and dissolved organic matter by investigating the influence of experimental parameters such as the electrocatalyst materials (Ti/Pt and Ti/Pt-SnSb) and current density in order to compare their efficiency, energy consumption and cost. The dye Novacron Blue CD (NB) was employed in synthetic solution, while the dyes Remazol Yellow 3RS (RY 3RS) Remazol Red RR Gran (RR-RR Gran) and Navy Blue CL-R (NB CL-R) were used to generate simulated textile effluent laboratory. The results showed that the application of electrochemical oxidation process favors the elimination of color effectively independent the electrocatalytic material and current used, as well as treated effluent. However, the influence of electrocatalytic material was crucial to reduction of the organic matter in all cases.
Resumo:
A purified commercial double-walled carbon nanotube (DWCNT) sample was investigated by transmission electron microscopy (TEM), thermogravimetry (TG), and Raman spectroscopy. Moreover, the heat capacity of the DWCNT sample was determined by temperature-modulated differential scanning calorimetry in the range of temperature between -50 and 290 °C. The main thermo-oxidation characterized by TG occurred at 474 °C with the loss of 90 wt% of the sample. Thermo-oxidation of the sample was also investigated by high-resolution TG, which indicated that a fraction rich in carbon nanotube represents more than 80 wt% of the material. Other carbonaceous fractions rich in amorphous coating and graphitic particles were identified by the deconvolution procedure applied to the derivative of TG curve. Complementary structural data were provided by TEM and Raman studies. The information obtained allows the optimization of composites based on this nanomaterial with reliable characteristics.
Resumo:
A survey of a number of schools in a number of different climates was carried out to determine the condition of building components of interest in the project. Schools in Melbourne, the Victorian Surf Coast, Brisbane, Townsville and the Sunshine Coast were inspected. A rating system was devised to categorise the components and the results collated in tables. Analysis of the data (where sufficient examples permitted) resulted in formulae to predict the service of the components and a database was derived.
Resumo:
The management of main material prices of provincial highway project quota has problems of lag and blindness. Framework of provincial highway project quota data MIS and main material price data warehouse were established based on WEB firstly. Then concrete processes of provincial highway project main material prices were brought forward based on BP neural network algorithmic. After that standard BP algorithmic, additional momentum modify BP network algorithmic, self-adaptive study speed improved BP network algorithmic were compared in predicting highway project main prices. The result indicated that it is feasible to predict highway main material prices using BP NN, and using self-adaptive study speed improved BP network algorithmic is the relatively best one.
Resumo:
Many interesting phenomena have been observed in layers of granular materials subjected to vertical oscillations; these include the formation of a variety of standing wave patterns, and the occurrence of isolated features called oscillons, which alternately form conical heaps and craters oscillating at one-half of the forcing frequency. No continuum-based explanation of these phenomena has previously been proposed. We apply a continuum theory, termed the double-shearing theory, which has had success in analyzing various problems in the flow of granular materials, to the problem of a layer of granular material on a vertically vibrating rigid base undergoing vertical oscillations in plane strain. There exists a trivial solution in which the layer moves as a rigid body. By investigating linear perturbations of this solution, we find that at certain amplitudes and frequencies this trivial solution can bifurcate. The time dependence of the perturbed solution is governed by Mathieu’s equation, which allows stable, unstable and periodic solutions, and the observed period-doubling behaviour. Several solutions for the spatial velocity distribution are obtained; these include one in which the surface undergoes vertical velocities that have sinusoidal dependence on the horizontal space dimension, which corresponds to the formation of striped standing waves, and is one of the observed patterns. An alternative continuum theory of granular material mechanics, in which the principal axes of stress and rate-of-deformation are coincident, is shown to be incapable of giving rise to similar instabilities.
Resumo:
This research explores the empirical association between takeover bid premium and acquired (purchased) goodwill, and tests whether the strength of the association changes after the passage of approved accounting standard AASB 1013 in Australia in 1988. AASB 1013 mandated capitalization and amortization of acquired goodwill to the income statement over a maximum period of 20 years. We use regressions to assess how the association between bid premium and acquired goodwill varies in the pre-AASB and post-AASB 1013 periods after controlling for confounding factors. Our results show that reducing the variety of accounting policy options available to bidder management after an acquisition results in a systematic reduction in the strength of the association between premium and goodwill.