963 resultados para Material cost
Resumo:
In truck manufacturing, the exhaust and air inlet pipes are specialized equipment that requires highly skilled, heavy machinery and small batch production methods. This paper describes a project to develop the computer numerically controlled (CNC) pipe bending process for a truck component manufacturer. The company supplies a huge range of heavy duty truck parts to the domestic market and is a significant supplier in Australia. The company has been using traditional methods of machine assisted manual pipe bending techniques. In a drive of continuous improvement, the company has acquired a pre-owned CNC bending machine capable of bending pipes automatically up to 25 bends. However, due to process mismatch, this machine is only used for single bending operation. The researchers studied the bending system and changed the manufacturing process. Using an example exhaust pipe as the benchmark, a significant drop of manufacturing lead time from 70 minutes to 40 minutes for each pipe was demonstrated. There was also a decrease of material cost due to the multiple bends part in one piece without cutting excessive materials for each single bend like it used to be.
Resumo:
Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm2, open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.
Resumo:
The study was designed to determine the costs, returns and relative profitability of pond fish and nursery fish production. In order to attain this objective, a total of 70 producers: 35 producing pond fish and 35 producing nursery fish were selected on the basis of purposive random sampling technique from 6 villages under two Upazilas (Sujanagar and Santhia) of Pabna district. It was estimated that per hectare per year gross cost of pond fish production was Tk 65,918 while gross return and net return were Tk 91,707 and Tk 25,789 respectively. Per hectare per year gross cost of nursery fish production was Tk 87,489 while gross return and net return were Tk 1,39,272 and Tk 51,783 respectively. The findings revealed that nursery fish production was more profitable than pond fish production. Cobb-Douglas production function was applied to realize the specific effect of the factors on pond fish and nursery fish production. It was observed that most of the included variables had significant impact on pond fish and nursery fish production. Out of five variables included in the function, all the variables had positive impact on return from pond fish production but stock value of pond, material cost and pond area had positive impact on return from nursery fish production.
Resumo:
This paper describes a stressed-skin diaphragm approach to the optimal design of the internal frame of a cold-formed steel portal framing system, in conjunction with the effect of semi-rigid joints. Both ultimate and serviceability limit states are considered. Wind load combinations are included. The designs are optimized using a real-coded niching genetic algorithm, in which both discrete and continuous decision variables are processed. For a building with two internal frames, it is shown that the material cost of the internal frame can be reduced by as much as 53%, compared with a design that ignores stressed-skin action.
Resumo:
Lightweighting the preform to reduce material cost is possibly reaching its limit; key areas of the bottle however may deserve closer attention. The lack of material stretching at the bottle base insists on increased thickness to compensate for the impaired strength in this area. To improve this phenomenon, design of a novel stretch-rod that can mechanically stretch the preform tip during the ISBM process has been developed.
PETAL-ROD is a device that can be retrofitted to existing ISBM machines with minimum interruption to production rate, with the added benefit that material characteristics similar to the sidewall of the bottle can be achieved in the area of the base. Coupled with an optimized preform design, material weight saving can be improved.
Resumo:
This study is the first of its kind in India, where in smoked and thermal processed products have been developed using locally available wood as the source of wood smoke and flavoring and a shelf life of one year has been achieved. Retortable pouches of three layers, both imported and indigenous were found suitable to store thermal processed products. Heat penetration rate is quicker in retort pouches due to their thin profile in comparison to cans and hence the total process time is lesser. The nutritional and sensory attributes of the pouch products are better retained during processing. Hence these products are more acceptable than canned products. lndian vegetarian food products and fish curry products are available in the ready to eat form in the markets. Smoked and thermal processed products have not gained an entry to the market and hence this study will pave an opening for such products. Currently trade in tuna products from India is meager compared to the global trade. ln India proper utilization of tuna resources is yet to be achieved due to the lack of infrastructure for handling and knowledge of value addition. The raw material cost is also less due to the poor quality of the fish when landed. Hence, the availability of such products will help in the trade of tuna products, improving the quality of raw material landing and ultimately realizing a better value to the fishermen and processors.
Resumo:
The reduction of the fuel content of a monoethanolamine nitrate (MEAN) fueled explosive slurry was investigated. The work was performed in three phases. The first one involved the MEAN content reduction in a reference slurry from its initial value of 36 down to 24% by weight, the balance being filled with ammonium nitrate, the least expensive item in the slurry composition. This proved to be successful, leading to an overall cost reduction of 17%, while keeping the overall performance quite satisfactory. The second phase consisted in trying to bring the MEAN content down from 24 to 17%. Although this led to further cost reduction, the formulations, obtained by substituting part of the MEAN content by ammonium nitrate/fuel oil (ANFO), produced unsatisfactory results regarding ignition and densities. In the third phase, the Design of Experiments Technique was used to find formulations displaying not only lower cost, but also acceptable overall performance. This led to a raw material cost reduction ranging from 23 to 26% relative to the initial reference slurry formulation.
Resumo:
The production by biosynthesis of optically active amino acids and amines satisfies the pharmaceutical industry in its demand for chiral building blocks for the synthesis of various pharmaceuticals. Among several enzymatic methods that allow the synthesis of optically active aminoacids and amines, the use of minotransferase is a promising one due to its broad substrate specificity and no requirement for external cofactor regeneration. The synthesis of chiral compounds by aminotransferases can be done either by asymmetric synthesis starting from keto acids or ketones, and by kinetic resolution starting from racemic aminoacids or amines. The asymmetric synthesis of substituted (S)-aminotetralin, an active pharmaceutical ingredient (API), has shown to have two major factors that contribute to increasing the cost of production. These factors are the raw material cost of biocatalyst used to produce it and product loss during biocatalyst separation. To minimize the cost contribution of biocatalyst and to minimize the loss of product, two routes have been chosen in this research: 1. To engineer the aminotransferase biocatalyst to have greater specific activity, and 2. Improve the engineering of the process by immobilization of biocatalyst in calcium alginate and addition of cosolvents. An (S)-aminotransferase (Mutant CNB03-03) was immobilized, not as purified enzyme but as enzyme within spray dried cells, in calcium alginate beads and used to produce substituted (S)-aminotetralin at 50 °C and pH 7 in experiments where the immobilized biocatalyst was recycled. Initial rate of reaction for cycle 1 (6 hr duration) was determined to be 0.258 mM/min, for cycle 2 (20 hr duration) it decreased by ~50% compared to cycle 1, and for cycle 3 (20 hr duration) it decreased by ~90% compared to cycle 1 (immobilized preparation consisted of 50 mg of spray dried cells per gram of calcium alginate). Conversion to product for each cycle decreased as well, from 100% in cycle 1 (About 50 mM), 80% in cycle 2, and 30% after cycle 3. This mutant was determined to be deactivated at elevated temperatures during the reaction cycle and was not stable enough to allow multiple cycles in its immobilized form. A new mutant aminotransferase was isolated by applying error-prone polymerase chain reaction (PCR) on the gene coding for this enzyme and screening/selection: CNB04-01. This mutant showed a significant improvement in thermostability in comparison to CNB03-03. The new mutant was immobilized and tested under similar reaction conditions. Initial rate remained fairly constant (0.2 mM/min) over four cycles (each cycle with a duration of about 20 hours) with the mutant retaining almost 80% of initial rate in the fourth cycle. The final product concentrations after each cycle did not decrease during recycle experiments. Thermostability of CNB04-01 was much improved compared to CNB03-03. Under the same reaction conditions as stated above, the addition of co-solvents was studied in order to increase substituted tetralone solubility. Toluene and sodium dodecylsulfate (SDS) were used. SDS at 0.01% (w/v) allowed four recycles of the immobilized spray dried cells of CNB04-01, always reaching higher product concentration (80-85 mM) than the system with toluene at 3% (v/v) -70 mM-. The long term activity of immobilized CNB04-01 in a system with SDS 0.01% (w/v) at 50 °C, pH 7 was retained for three cycles (20 to 24 hours each one), reaching always final product concentration between 80-85 mM, but dropping precipitously in the fourth cycle to a final product concentration of 50 mM. Although significant improvement of immobilization on productivity and stability were observed using CNB04-01, another observation demonstrated the limitations of an immobilization strategy on reducing process costs. After analyzing the results of this experiment it was seen that a sudden drop occurred on final product concentration after the third recycle. This was due to product accumulation inside the immobilized preparation. In order to improve the economics of the process, research was focused on developing a free enzyme with an even higher activity, thus reducing raw material cost as well as improving biomass separation. A new enzyme was obtained (CNB05-01) using error-prone PCR and screening using as a template the gene derived from the previous improved enzyme. This mutant was determined to have 1.6 times the initial rate of CNB04-01 and had a higher temperature optimum (55°). This new enzyme would allow reducing enzyme loading in the reaction by five-fold compared to CNB03-03, when using it at concentration of one gram of spray dried cells per liter (completing the reaction after 20-24 hours). Also this mutant would allow reducing process time to 7-8 hours when used at a concentration of 5 grams of spray dried cells per liter compared to 24 hours for CNB03-03, assuming that the observations shown before are scalable. It could be possible to improve the economics of the process by either reducing enzyme concentration or reducing process time, since the production cost of the desired product is primarily a function of both enzyme concentration and process time.
Resumo:
The paper lays down a strategy consisting of Innovation, Internalisation of Externalities, and Integration – called Triple I. ‘Innovation’ is seen along value chain management in a systems perspective, driven by competition and participation of stakeholders. ‘Internalisation’ refers to endogenous efforts by industry to assess externalities and to foster knowledge generation that leads to benefits for both business and society. ‘Integration’ highlights the role business and its various forms of cooperation might play in policy integration within Europe and beyond. Looking forward towards measures to be taken, the paper explores some frontiers for a partnership between public and private sector: i) Increasing resource productivity, lowering material cost, ii) Energy integration with Southeast Europe and Northern Africa, iii) Urban mobility services and public transport, iv) Tradable emission permits beyond Europe. Finally, some conclusions from the perspective of the College of Europe are drawn.
Resumo:
The aim of the work presented in this thesis is to produce a direct method to design structures subject to deflection constraints at the working loads. The work carried out can be divided into four main parts. In the first part, a direct design procedure for plane steel frames subjected to sway limitations is proposed. The stiffness equations are modified so that the sway in each storey is equal to some specified values. The modified equations are then solved by iteration to calculate the cross-sectional properties of the columns as well as the other joint displacements. The beam sections are selected initially and then altered in an effort to reduce the total material cost of the frame. A linear extrapolation technique is used to reduce this cost. In this design, stability functions are used so that the effect of axial loads in the members are taken into consideration. The final reduced cost design is checked for strength requirements and the members are altered accordingly. In the second part, the design method is applied to the design of reinforced concrete frames in which the sway in the columns play an active part in the design criteria. The second moment of area of each column is obtained by solving the modified stiffness equations and then used to calculate the mlnlmum column depth required. Again the frame has to be checked for all the ultimate limit state load cases. In the third part, the method is generalised to design pin-jointed space frames for deflection limitatlions. In these the member areas are calculated so that the deflection at a specified joint is equal to its specified value. In the final part, the Lagrange multiplier technique is employed to obtain an optimum design for plane rigidly jointed steel frames. The iteration technique is used here to solve the modified stiffness equations as well as derivative equations obtained in accordance to the requirements of the optimisation method.
Resumo:
The human and material cost of type 2 diabetes is a cause of increasing concern for health professionals, representative organisations and governments worldwide. The scale of morbidity and mortality has led the United Nations to issue a resolution on diabetes, calling for national policies for prevention, treatment and care. There is clearly an urgent need for a concerted response from all interested parties at the community, national and international level to work towards the goals of the resolution and create effective, sustainable treatment models, care systems and prevention strategies. Action requires both a 'bottom-up' approach of public awareness campaigns and pressure from healthcare professionals, coupled with a 'top-down' drive for change, via partnerships with governments, third sector (non-governmental) organisations and other institutions. In this review, we examine how existing collaborative initiatives serve as examples for those seeking to implement change in health policy and practice in the quest to alleviate the health and economic burden of diabetes. Efforts are underway to provide continuous and comprehensive care models for those who already have type 2 diabetes; in some cases, national plans extend to prevention strategies in attempts to improve overall public health. In the spirit of partnership, collaborations with governments that incorporate sustainability, long-term goals and a holistic approach continue to be a driving force for change. It is now critical to maintain this momentum and use the growing body of compelling evidence to educate, inform and deliver a long-term, lasting impact on patient and public health worldwide. © 2007 The Authors.
Resumo:
Due to diminishing petroleum reserves, unsteady market situation and the environmental concerns associated with utilization of fossil resources, the utilization of renewables for production of energy and chemicals (biorefining) has gained considerable attention. Biomass is the only sustainable source of organic compounds that has been proposed as petroleum equivalent for the production of fuels, chemicals and materials. In fact, it would not be wrong to say that the only viable answer to sustainably convene our future energy and material requirements remain with a bio-based economy with biomass based industries and products. This has prompted biomass valorization (biorefining) to become an important area of industrial research. While many disciplines of science are involved in the realization of this effort, catalysis and knowledge of chemical technology are considered to be particularly important to eventually render this dream to come true. Traditionally, the catalyst research for biomass conversion has been focused primarily on commercially available catalysts like zeolites, silica and various metals (Pt, Pd, Au, Ni) supported on zeolites, silica etc. Nevertheless, the main drawbacks of these catalysts are coupled with high material cost, low activity, limited reusability etc. – all facts that render them less attractive in industrial scale applications (poor activity for the price). Thus, there is a particular need to develop active, robust and cost efficient catalytic systems capable of converting complex biomass molecules. Saccharification, esterification, transesterification and acetylation are important chemical processes in the valorization chain of biomasses (and several biomass components) for production of platform chemicals, transportation fuels, food additives and materials. In the current work, various novel acidic carbons were synthesized from wastes generated from biodiesel and allied industries, and employed as catalysts in the aforementioned reactions. The structure and surface properties of the novel materials were investigated by XRD, XPS, elemental analysis, SEM, TEM, TPD and N2-physisorption techniques. The agro-industrial waste derived sulfonic acid functionalized novel carbons exhibit excellent catalytic activity in the aforementioned reactions and easily outperformed liquid H2SO4 and conventional solid acids (zeolites, ion-exchange resins etc). The experimental results indicated strong influence of catalyst pore-structure (pore size, pore-volume), concentration of –SO3H groups and surface properties in terms of the activity and selectivity of these catalysts. Here, a large pore catalyst with high –SO3H density exhibited the highest esterification and transesterification activity, and was successfully employed in biodiesel production from fatty acids and low grade acidic oils. Also, a catalyst decay model was proposed upon biodiesel production and could explain that the catalyst loses its activity mainly due to active site blocking by adsorption of impurities and by-products. The large pore sulfonated catalyst also exhibited good catalytic performance in the selective synthesis of triacetin via acetylation of glycerol with acetic anhydride and out-performed the best zeolite H-Y with respect to reusability. It also demonstrated equally good activity in acetylation of cellulose to soluble cellulose acetates, with the possibility to control cellulose acetate yield and quality (degree of substitution, DS) by a simple adjustment of reaction time and acetic anhydride concentration. In contrast, the small pore and highly functionalized catalysts obtained by hydrothermal method and from protein rich waste (Jatropha de-oiled waste cake, DOWC), were active and selective in the esterification of glycerol with fatty acids to monoglycerides and saccharification of cellulosic materials, respectively. The operational stability and reusability of the catalyst was found to depend on the stability of –SO3H function (leaching) as well as active site blocking due to adsorption of impurities during the reaction. Thus, our results corroborate the potential of DOWC derived sulfated mesoporous active carbons as efficient integrated solid acid catalysts for valorization of biomass to platform chemicals, biofuel, bio-additive, surfactants and celluloseesters.
Resumo:
One new homoleptic Bi(dtc)(3)] (1) (dtc = 4-hydroxypiperdine dithiocarbamate) has been synthesized and characterized by microanalysis, IR, UV-Vis, H-1 and C-13 spectroscopy and X-ray crystallography. The photoluminescence spectrum for the compound in DMSO solution was recorded. The crystal structure of 1 displayed distorted octahedral geometry around the Bi(III) center bonded through sulfur atoms of the dithiocarbamate ligands. TGA indicates that the compound decomposes to a Bi and Bi-S phase system. The Bi and Bi-S obtained from decomposition of the compound have been characterized by pXRD, EDAX and SEM. Solvothermal decomposition of 1 in the absence and presence of two different capping agents yielded three morphologically different Bi2S3 systems which were deployed as counter-electrode in dye-sensitized solar cells (DSSCs). (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)