933 resultados para Matarraña sub-catchment
Resumo:
This is the River Ehen and Calder sub catchment management plan: Consultation Report September 1993 produced by the National Rivers Authority (NRA) North West Region in 1993. The report focuses on the management plan of both River Catchments Ehen and Calder, in North West England, UK. The Catchment Management Plan (C.M.P.) enabled the NRA to summarise the status of the catchment, identify the main issues and present its vision of the future. It provides a strategic policy framework for its Management and influences decision making leading to improvements in the water environment. The report contains sections on Description of Catchment, Catchment uses by NRA function, Target and objectives of the plan, Summary of Issues and Catchment Issues. The section on description of Catchment includes a general description, Transport, Geology, major services, summary of key details, area, topography, administrative details, main towns and population, water quality Sewage Treatment Works Trade effluent discharges, Water Resources, flood defence and land drainage and Fisheries.
Resumo:
JA-925
Resumo:
The INtegrated CAtchment (INCA) model has been developed to simulate the impact of mine discharges on river systems. The model accounts for the key kinetic chemical processes operating as well as the dilution, mixing and redistribution of pollutants in rivers downstream of mine discharges or acid rock drainage sites. The model is dynamic and simulates the day-to-day behaviour of hydrology and eight metals (cadmium, mercury, copper, zinc, lead, arsenic, manganese and chromium) as well as cyanide and ammonia. The model is semi-distributed and can simulate catchments, sub-catchment and in-stream river behaviour. The model has been applied to the Roia Montan Mine in Transylvania, Romania, and used to assess the impacts of old mine adits on the local catchments as well as on the downstream Aries and Mures river system. The question of mine restoration is investigated and a set of clean-up scenarios investigated. It is shown that the planned restoration will generate a much improved water quality from the mine and also alleviate the metal pollution of the river system.
Resumo:
A semi-distributed model, INCA, has been developed to determine the fate and distribution of nutrients in terrestrial and aquatic systems. The model simulates nitrogen and phosphorus processes in soils, groundwaters and river systems and can be applied in a semi-distributed manner at a range of scales. In this study, the model has been applied at field to sub-catchment to whole catchment scale to evaluate the behaviour of biosolid-derived losses of P in agricultural systems. It is shown that process-based models such as INCA, applied at a wide range of scales, reproduce field and catchment behaviour satisfactorily. The INCA model can also be used to generate generic information for risk assessment. By adjusting three key variables: biosolid application rates, the hydrological connectivity of the catchment and the initial P-status of the soils within the model, a matrix of P loss rates can be generated to evaluate the behaviour of the model and, hence, of the catchment system. The results, which indicate the sensitivity of the catchment to flow paths, to application rates and to initial soil conditions, have been incorporated into a Nutrient Export Risk Matrix (NERM).
Resumo:
A detailed analysis of temporal and spatial trends in nitrogen (N) speciation and phosphorus (P) fractionation in the Wylye, a lowland Chalk sub-catchment of the Hampshire Avon, UK is presented, identifying the sources contributing to nutrient enrichment, and temporal variability in the fractionation of nutrients in transit from headwaters to lower reaches of the river. Samples were collected weekly from ten monitoring stations with daily sampling at three further sites over one year, and monthly inorganic N and total reactive P (TRP) concentrations at three of the ten weekly monitoring stations over a ten year period are also presented. The data indicate significant daily and seasonal variation in nutrient fractionation in the water column, resulting from plant uptake of dissolved organic and inorganic nutrient fractions in the summer months, increased delivery of both N and P from diffuse sources in the autumn to winter period and during high flow events, and lack of dilution of point source discharges to the Wylye from septic tank, small package Sewage Treatment Works (STW) and urban Waste Water Treatment Works (WwTW) during the summer low flow period. Weekly data show that contributing source areas vary along the river with headwater N and P strongly influenced by diffuse inorganic N and particulate P fluxes, and SRP and organic-rich point source contributions from STW and WwTW having a greater influence in the lower reaches. Long-term data show a decrease in TRP concentrations at all three monitoring stations, with the most pronounced decrease occurring downstream from Warminster WwTW, following the introduction of P stripping at the works in 2001. Inorganic N demonstrates no statistically significant change over the ten year period of record in the rural headwaters, but an increase in the lower reaches downstream from the WwTW which may be due to urban expansion in the lower catchment.
Resumo:
This paper analyzes the hydrological processes and the impact of soil properties and land use on these processes in tropical headwater catchment in the sub-humid part of Benin (West-Africa), the Aguima catchment. The presented study is integrated in the GLOWA IMPETUS project, which investigates the effects of global change on the water cycle and water availability on a regional scale in Morocco and Benin. The lack of field investigations concerning soil and surface hydrology in the Benin research area necessitates detailed field measurements including measurements of discharge, soil water dynamics, soil physical properties etc. on the local scale in order to understand the dominant runoff generation processes and its influencing factors. This is a pre-requisite to be able to forecast the effects which global change has on hydrological processes and water availability in the region. The paper gives an overview over the hydrologic measuring concept of the IMPETUS-Benin project focusing on measurements concerning the soil saturated conductivity ksat and discharge behaviour of two different sub-catchment of the Aguima catchment. The results of ksat measurements revealed that interflow is the dominant runoff process on the hillslopes of the investigated catchment. Concerning the impact of land use on the hydrological processes infiltration experiments showed that infiltration rates were reduced on cultivated land compared to natural land cover. This results in significant differences in runoff behaviour and runoff ratios while comparing natural and agricultural used catchments.
Resumo:
The Lockyer Valley is situated 80 km west of Brisbane and is bounded on the sou th and west by the Great Dividing Range. The valley is a major western sub - catchment of the larger Brisbane River drainage system and is drained by the Lockyer Creek. The Lockyer catchment forms approximately 20% of the total Brisbane River catchment and has an area of around 2900 km2. The Lockyer Creek is an ephemeral drainage system, and the stream and associated alluvium are the main source for irrigation water supply in the Lockyer Valley. The catchment is comprised of a number of well -defined, elongate tributaries in the south, and others in the north, which are more meandering in nature.
Resumo:
Land-use changes influence local biodiversity directly, and also cumulatively, contribute to regional and global changes in natural systems and quality of life. Consequent to these, direct impacts on the natural resources that support the health and integrity of living beings are evident in recent times. The Western Ghats being one of the global biodiversity hotspots, is reeling under a tremendous pressure from human induced changes in terms of developmental projects like hydel or thermal power plants, big dams, mining activities, unplanned agricultural practices,monoculture plantations, illegal timber logging, etc. This has led to the once contiguous forest habitats to be fragmented in patches, which in turn has led to the shrinkage of original habitat for the wildlife, change in the hydrological regime of the catchment, decreased inflow in streams,human-animal conflicts, etc. Under such circumstances, a proper management practice is called for requiring suitable biological indicators to show the impact of these changes, set priority regions and in developing models for conservation planning. Amphibians are regarded as one of the best biological indicators due to their sensitivity to even the slightest changes in the environment and hence they could be used as surrogates in conservation and management practices. They are the predominating vertebrates with a high degree of endemism (78%) in Western Ghats. The present study is an attempt to bring in the impacts of various land-uses on anuran distribution in three river basins. Sampling was carried out for amphibians during all seasons of 2003-2006 in basins of Sharavathi, Aghanashini and Bedthi. There are as many as 46 species in the region, one of which is new to science and nearly 59% of them are endemic to the Western Ghats. They belong to nine families, Dicroglossidae being represented by 14 species,followed by Rhacophoridae (9 species) and Ranidae (5 species). Species richness is high in Sharavathi river basin, with 36 species, followed by Bedthi 33 and Aghanashini 27. The impact of land-use changes, was investigated in the upper catchment of Sharavathi river basin. Species diversity indices, relative abundance values, percentage endemics gave clear indication of differences in each sub-catchment. Karl Pearson’s correlation coefficient (r) was calculated between species richness, endemics, environmental descriptors, land-use classes and fragmentation metrics. Principal component analysis was performed to depict the influence of these variables. Results show that sub-catchments with lesser percentage of forest, low canopy cover, higher amount of agricultural area, low rainfall have low species richness, less endemic species and abundant non-endemic species, whereas endemism, species richness and abundance of endemic species are more in the sub-catchments with high tree density, endemic trees, canopy cover, rainfall and lower amount of agriculture fields. This analysis aided in prioritising regions in the Sharavathi river basin for further conservation measures.
Resumo:
This is the report on the River Ehen salmonid fishery - current status and a summary of fisheries work during the period 1993-1996, produced by the Environment Agency North West in 1997. This report draws together a number of investigations and surveys undertaken following the 1993 Strategic fisheries survey of the River Ehen. It specifically details the historic catch data available for this catchment for both salmon and sea trout and examines the current stock levels based on this data. Concerns over sea trout stock levels are raised and a detailed examination of the possible limiting factors involved is included. Information from surveys on the River Keekle is analysed with reference to its potential for sea trout production both currently and with the proposed clean up on Oatlands tip. Salmon production in the historically acidified River Liza sub catchment is examined along with ways of boosting production further following recent reductions in acidic episodes. Future and current issues and actions required in the catchment are listed along with the responsible party and estimated costs involved.
Resumo:
Diffuse contaminants can make their way into rivers via a number of different pathways, including overland flow, interflow, and shallow and deep groundwater. Identification of the key pathway(s) delivering contaminants to a receptor is important for implementing effective water management strategies. The ‘Pathways Project’, funded by the Irish Environmental Protection Agency, is developing a catchment management tool that will enable practitioners to identify the critical source areas for diffuse contaminants, and the key pathways of interest in assessing contaminant problems on a catchment and sub-catchment scale.
One of the aims of the project is to quantify the flow and contaminant loadings being delivered to the stream via each of the main pathways. Chemical separation of stream event hydrographs is being used to supplement more traditional physical hydrograph separation methods. Distinct, stable chemical signatures are derived for each of the pathway end members, and the proportion of flow from each during a rainfall event can be determined using a simple mass balance approach.
Event sampling was carried out in a test catchment underlain by poorly permeable soils and bedrock, which is predominantly used for grazing with a number of one-off rural residential houses. Results show that artificial field drainage, which includes subterranean land drains and collector drains around the perimeters of the 1 to 10 ha fields, plays an important role in the delivery of flow and nutrients to the streams in these types of hydrogeological settings.
Nitrate infiltrates with recharge and is delivered to the stream primarily via the artificial drains and the shallow groundwater pathway. Longitudinal stream profiles show that the nitrate load input is relatively uniform over the 8 km length of the stream at high flows, suggesting widespread diffuse contaminant input. In contrast, phosphorus is adsorbed in the clay-rich soil and is transported mainly via the overland flow pathway and the artificial drains. Longitudinal stream profiles for phosphorus suggest a pattern of more discrete points of phosphorus inputs, which may be related to point sources of contamination.
These techniques have application elsewhere within a toolkit of methods for determining the key pathways delivering contaminants to surface water receptors.
Resumo:
Aquatic macrophyte community distribution along the eastern shoreline of the Itaipu Reservoir (one of the South America's largest impoundments) is described in relation to limnological and sedimentological factors. The central body of the reservoir is mesotrophic, while the arms (flooded influent river valleys) along the eastern shore may be oligo-mesotrophic to eutrophic, depending on time of year and sub-catchment characteristics. Macrophyte community composition and species cover were surveyed at 30 sites in four arms, in relation to sediment total P and organic matter; underwater light regime; and water total P and Kjeldahl N concentration, alkalinity, conductivity, depth and pH. Seventeen euhydrophyte and six emergent macrophyte species were recorded. Large stands of Egeria najas dominated the euhydrophyte vegetation, together with free-floating weed species (Pistia stratiotes Linn., Salvinia auriculata Aublet and Eichhornia crassipes (Mart.) Solms.). Canonical Correspondence Analysis of the data showed that two sets of variables were important predictors of aquatic macrophyte community structure. Floating macrophyte assemblage was closely related to concentration of nutrients in both water and sediment, while light penetration was the strongest predictor of submerged species occurrence. Although a large number of potential nuisance species were present, dense growths were restricted to shallower areas of the Itaipu Reservoir, causing localised problems. The possibility of increasing interference by these plants with fisheries, recreational use, transport and hydroelectricity generation suggests a need for continued monitoring of weed distribution and abundance, and investigation of appropriate management measures.
Resumo:
Land use in the river catchments of tropical North Queensland appears to have increased the export of sediment and nutrients to the coast. Although evidence of harmful effect of sediment on coastal and riverine ecosystems is limited, there is a growing concern about its possible negative impacts. Sugarcane cultivation on the floodplains of the tropical North Queensland river catchments is thought to be an important source of excess sediment in the river drainage systems. Minimum-tillage, trash blanket harvesting has been shown to reduce erosion from sloping sugarcane fields, but in the strongly modified floodplain landscape other elements (e.g. drains, water furrows and headlands) could still be important sediment sources. The main objectives of this thesis are to quantify the amount of sediment coming from low-lying cane land and identify the important sediment sources in the landscape. The results of this thesis enable sugarcane farmers to take targeted measures for further reduction of the export of sediment and nutrients. Sediment budgets provide a useful approach to identify and quantify potential sediment sources. For this study a sediment budget is calculated for a part of the Ripple Creek catchment, which is a sub-catchment of the Lower Herbert River. The input of sediment from all potential sources in cane land and the storage of sediment within the catchment have been quantified and compared with the output of sediment from the catchment. Input from, and storage on headlands, main drains, minor drains and water furrows, was estimated from erosion pin and surface profile measurements. Input from forested upland, input from fields and the output at the outlet of the catchment was estimated with discharge data from gauged streams and flumes. Data for the sediment budget were collected during two ‘wet’-seasons: 1999-2000 and 2000-2001. The results of the sediment budget indicate that this tropical floodplain area is a net source of sediment. Plant cane fields, which do not have a protective trash cover, were the largest net source of sediment during the 1999-2000 season. Sediment input from water furrows was higher, but there was also considerable storage of sediment in this landscape element. Headlands tend to act as sinks. The source or sink function of drains is less clear, but seems to depend on their shape and vegetation cover. An important problem in this study is the high uncertainty in the estimates of the sediment budget components and is, for example, likely to be the cause of the imbalance in the sediment budget. High uncertainties have particularly affected the results from the 20002001 season. The main source of uncertainty is spatial variation in the erosion and deposition processes. Uncertainty has to be taken into consideration when interpreting the budget results. The observation of a floodplain as sediment source contradicts the general understanding that floodplains are areas of sediment storage within river catchments. A second objective of this thesis was therefore to provide an answer to the question: how can floodplains in the tropical North Queensland catchments can be a source of sediment? In geomorphic literature various factors have been pointed out, that could control floodplain erosion processes. However, their importance is not 'uniquely identified'. Among the most apparent factors are the stream power of the floodwater and the resistance of the floodplain surface both through its sedimentary composition and the vegetation cover. If the cultivated floodplains of the North Queensland catchments are considered in the light of these factors, there is a justified reason to expect them to be a sediment source. Cultivation has lowered the resistance of their surface; increased drainage has increased the drainage velocity and flood control structures have altered flooding patterns. For the Ripple Creek floodplain four qualitative scenarios have been developed that describe erosion and deposition under different flow conditions. Two of these scenarios were experienced during the budget study, involving runoff from local hillslopes and heavy rainfall, which caused floodplain erosion. In the longer term larger flood events, involving floodwater from the Herbert River, may lead to different erosion and deposition processes. The present study has shown that the tropical floodplain of the Herbert River catchment can be a source of sediment under particular flow conditions. It has also shown which elements in the sugarcane landscape are the most important sediment sources under these conditions. This understanding will enable sugarcane farmers to further reduce sediment export from cane land and prevent the negative impact this may have on the North Queensland coastal ecosystems.
Resumo:
A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain-snow transition zone. This type of dataset is extremely rare in scientific literature because of the quality and quantity of soil depth, soil texture, soil moisture, and soil temperature data. Standard meteorological and snow cover data for the entire 2011 water year are included, which include several rain-on-snow events. Surface soil textures and soil depths from 57 points are presented as well as soil texture profiles from 14 points. Meteorological data include continuous hourly shielded, unshielded, and wind corrected precipitation, wind speed, air temperature, relative humidity, dew point temperature, and incoming solar and thermal radiation data. Sub-surface data included are hourly soil moisture data from multiple depths from 7 soil profiles within the catchment, and soil temperatures from multiple depths from 2 soil profiles. Hydrologic response data include hourly stream discharge from the catchment outlet weir, continuous snow depths from one location, intermittent snow depths from 5 locations, and snow depth and density data from ten weekly snow surveys. Though it represents only a single water year, the presentation of both above and below ground hydrologic condition makes it one of the most detailed and complete hydro-climatic datasets from the climatically sensitive rain-snow transition zone for a wide range of modeling and descriptive studies.
Resumo:
The low stream salinity naturally in the Nebine-Mungallala Catchment, extent of vegetation retention, relatively low rainfall and high evaporation indicates that there is a relatively low risk of rising shallow groundwater tables in the catchment. Scalding caused by wind and water erosion exposing highly saline sub-soils is a more important regional issue, such as in the Homeboin area. Local salinisation associated with evaporation of bore water from free flowing bore drains and bores is also an important land degradation issue particularly in the lower Nebine, Wallam and Mungallala Creeks. The replacement of free flowing artesian bores and bore drains with capped bores and piped water systems under the Great Artesian Basin bore rehabilitation program is addressing local salinisation and scalding in the vicinity of bore drains and preventing the discharge of saline bore water to streams. Three principles for the prevention and control of salinity in the Nebine Mungallala catchment have been identified in this review: • Avoid salinity through avoiding scalds – i.e. not exposing the near-surface salt in landscape through land degradation; • Riparian zone management: Scalding often occurs within 200m or so of watering lines. Natural drainage lines are most likely to be overstocked, and thus have potential for scalding. Scalding begins when vegetation is removed, and without that binding cover, wind and water erosion exposes the subsoil; and • Monitoring of exposed or grazed soil areas. Based on the findings of the study, we make the following recommendations: 1. Undertake a geotechnical study of existing maps and other data to help identify and target areas most at risk of rising water tables causing salinity. Selected monitoring should then be established using piezometers as an early warning system. 2. SW NRM should financially support scald reclamation activity through its various funding programs. However, for this to have any validity in the overall management of salinity risk, it is critical that such funding require the landholder to undertake a salinity hazard/risk assessment of his/her holding. 3. A staged approach to funding may be appropriate. In the first instance, it would be reasonable to commence funding some pilot scald reclamation work with a view to further developing and piloting the farm hazard/risk assessment tools, and exploring how subsequent grazing management strategies could be incorporated within other extension and management activities. Once the details of the necessary farm level activities have been more clearly defined, and following the outcomes of the geotechnical review recommended above, a more comprehensive funding package could be rolled out to priority areas. 4. We recommend that best-practice grazing management training currently on offer should be enhanced with information about salinity risk in scald-prone areas, and ways of minimising the likelihood of scald formation. 5. We recommend that course material be developed for local students in Years 6 and 7, and that arrangements be made with local schools to present this information. Given the constraints of existing syllabi, we envisage that negotiations may have to be undertaken with the Department of Education in order for this material to be permitted to be used. We have contact with key people who could help in this if required. 6. We recommend that SW NRM continue to support existing extension activities such as Grazing Land Management and the Monitoring Made Easy tools. These aids should be able to be easily expanding to incorporate techniques for monitoring, addressing and preventing salinity and scalding. At the time of writing staff of SW NRM were actively involved in this process. It is important that these activities are adequately resourced to facilitate the uptake by landholders of the perception that salinity is an issue that needs to be addressed as part of everyday management. 7. We recommend that SW NRM consider investing in the development and deployment of a scenario-modelling learning support tool as part of the awareness raising and education activities. Secondary salinity is a dynamic process that results from ongoing human activity which mobilises and/or exposes salt occurring naturally in the landscape. Time scales can be short to very long, and the benefits of management actions can similarly have immediate or very long time frames. One way to help explain the dynamics of these processes is through scenario modelling.
Resumo:
The Upper Roper River is one of the Australia’s unique tropical rivers which have been largely untouched by development. The Upper Roper River catchment comprises the sub-catchments of the Waterhouse River and Roper Creek, the two tributaries of the Roper River. There is a complex geological setting with different aquifer types. In this seasonal system, close interaction between surface water and groundwater contributes to both streamflow and sustaining ecosystems. The interaction is highly variable between seasons. A conceptual hydrogeological model was developed to investigate the different hydrological processes and geochemical parameters, and determine the baseline characteristics of water resources of this pristine catchment. In the catchment, long term average rainfall is around 850 mm and is summer dominant which significantly influences the total hydrological system. The difference between seasons is pronounced, with high rainfall up to 600 mm/month in the wet season, and negligible rainfall in the dry season. Canopy interception significantly reduces the amount of effective rainfall because of the native vegetation cover in the pristine catchment. Evaporation exceeds rainfall the majority of the year. Due to elevated evaporation and high temperature in the tropics, at least 600 mm of annual rainfall is required to generate potential recharge. Analysis of 120 years of rainfall data trend helped define “wet” and “dry periods”: decreasing trend corresponds to dry periods, and increasing trend to wet periods. The period from 1900 to 1970 was considered as Dry period 1, when there were years with no effective rainfall, and if there was, the intensity of rainfall was around 300 mm. The period 1970 – 1985 was identified as the Wet period 2, when positive effective rainfall occurred in almost every year, and the intensity reached up to 700 mm. The period 1985 – 1995 was the Dry period 2, with similar characteristics as Dry period 1. Finally, the last decade was the Wet period 2, with effective rainfall intensity up to 800 mm. This variability in rainfall over decades increased/decreased recharge and discharge, improving/reducing surface water and groundwater quantity and quality in different wet and dry periods. The stream discharge follows the rainfall pattern. In the wet season, the aquifer is replenished, groundwater levels and groundwater discharge are high, and surface runoff is the dominant component of streamflow. Waterhouse River contributes two thirds and Roper Creek one third to Roper River flow. As the dry season progresses, surface runoff depletes, and groundwater becomes the main component of stream flow. Flow in Waterhouse River is negligible, the Roper Creek dries up, but the Roper River maintains its flow throughout the year. This is due to the groundwater and spring discharge from the highly permeable Tindall Limestone and tufa aquifers. Rainfall seasonality and lithology of both the catchment and aquifers are shown to influence water chemistry. In the wet season, dilution of water bodies by rainwater is the main process. In the dry season, when groundwater provides baseflow to the streams, their chemical composition reflects lithology of the aquifers, in particular the karstic areas. Water chemistry distinguishes four types of aquifer materials described as alluvium, sandstone, limestone and tufa. Surface water in the headwaters of the Waterhouse River, the Roper Creek and their tributaries are freshwater, and reflect the alluvium and sandstone aquifers. At and downstream of the confluence of the Roper River, river water chemistry indicates the influence of rainfall dilution in the wet season, and the signature of the Tindall Limestone and tufa aquifers in the dry. Rainbow Spring on the Waterhouse River and Bitter Spring on the Little Roper River (known as Roper Creek at the headwaters) discharge from the Tindall Limestone. Botanic Walk Spring and Fig Tree Spring discharge into the Roper River from tufa. The source of water was defined based on water chemical composition of the springs, surface and groundwater. The mechanisms controlling surface water chemistry were examined to define the dominance of precipitation, evaporation or rock weathering on the water chemical composition. Simple water balance models for the catchment have been developed. The important aspects to be considered in water resource planning of this total system are the naturally high salinity in the region, especially the downstream sections, and how unpredictable climate variation may impact on the natural seasonal variability of water volumes and surface-subsurface interaction.