912 resultados para Mata nativa
Resumo:
This study aimed to evaluate the effect of time since the adoption of the no-till system, in comparison with a native forest area and a conventional tillage area, using the distribution of soil aggregates in a Distroferric Red Nitosol. Treatments were as follows: native forest (NF), conventional tillage (CT), no-till for one year (NT1), no-till for four years (NT4), no-till for five years (NT5), and no-till for 12 years (NT12). Aggregate samples were collected randomly within each treatment at depths of 0-5 and 10-15 cm. After sifting the aggregates in water they were separated into the following aggregate classes > 2 mm; < 2 mm; 2-1 mm, and < 1 mm. The adoption time in the no-till system favored soil aggregation. The mean weighted diameter (MWD) of the soil aggregates and the percentage of aggregates greater than 2 mm increased with adoption time in the no-till system at the 0-5 cm depth. The NF and NT12 treatments had higher MWD values in the 0-5 cm layer. CT had the highest percentage of aggregates smaller than 1 mm.
Resumo:
Os efeitos do tráfego de máquinas nos atributos do solo de acordo com o tempo de adoção do sistema plantio direto são ainda pouco pesquisados em ambientes tropicais, e muitas dúvidas ainda persistem sobre a variação dinâmica da estrutura do solo e a sua interação com máquinas e equipamentos. Objetivou-se com este estudo avaliar o efeito do tempo de adoção do sistema plantio direto, comparativamente com área de mata nativa e de preparo convencional, usando os modelos de compressibilidade do solo. O estudo foi realizado em um Nitossolo Vermelho distroférrico, sob mata nativa (MN), preparo convencional (PC), plantio direto com um ano (PD1), plantio direto com quatro anos (PD4), plantio direto com cinco anos (PD5) e plantio direto com 12 anos (PD12). Amostras indeformadas e deformadas foram coletadas em duas profundidades (0-5 e 10-15 cm). O tempo de adoção do sistema plantio direto alterou o comportamento compressivo dos solos em ambas as profundidades, por meio das mudanças na pressão de preconsolidação. A profundidade de 0-5 cm apresentou menor capacidade de suporte de carga do que a profundidade de 10-15 cm. A profundidade de 0-5 cm, em todos os sistemas de manejo, mostrou-se mais susceptível à compactação em relação à profundidade de 10-15 cm. Os sistemas de plantio direto e convencional apresentaram a capacidade de suporte de carga crescente na seguinte ordem: PD5 < PD12 < PD1 < PD4 @ PC, para a profundidade de 0-5 cm e para a profundidade de 10-15 cm: MN @ PD12 < PC @ PD4 < PD5, enquanto o sistema PD1 apresentou comportamento diferenciado.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Heavy metals are found naturally in soils at low concentrations, but their content may be increased by human activity, making them one of the barriers in management of tropical soils. These chemical elements can be found in the composition of organic and inorganic fertilizers, insecticides, fungicides, mine tailings, and urban waste, and may cause serious damage to the environment and human health. Thus, adsorption studies are essential in assessing the behavior of heavy metals in the soil. The objective of this study was to evaluate the influence of soil chemical, particle size, and mineralogical properties on adsorption of cadmium (Cd), evaluated by Langmuir and Freundlich models, in Latossolos (Oxisols) with or without human activity. Soil samples were collected from the surface layer, 0.00-0.20 m, and chemical, particle size, and mineralogical analyzes were performed. In the adsorption study, concentrations of 0, 5, 25, 50, 100, 200, 300, and 400 mu g L-1 of Cd were used in the form of Cd(NO3)(2). The empirical mathematical models of Langmuir and Freundlich were used for construction of adsorption isotherms. Data were analyzed by means of multivariate statistical techniques, Cluster Analysis and Principal Component Analysis. The data from the adsorption experiment showed a good fit to the Langmuir and Freundlich models. Soils with a lower goethite/hematite ratio and greater cation exchange capacity and pH, showed higher maximum adsorption capacity of Cd.
Resumo:
2016
Resumo:
Ectomycorrhizal associations are poorly known from tropical lowlands of South America. Recent field trips to the reserve Parque Estadual das Dunas in Natal, in Rio Grande do Norte state, Brazil, revealed a undocumented community of ectomycorrhizal fungi. This type of Mycorrhizal association is frequently in the north hemisphere in temperate and boreal forests. The aim of this work is to analyze the occurrence of ectotrophic areas in atlantic rainforest. Collections along and around the trails in the reserve revealed six genera of putatively ECM fungi which belong to the basidiomycete, Amanitaceae, Boletaceae, Russulaceae, Entolomataceae, and Sclerodermataceae family which are poorly documented in Brazil. Plants belonging to Myrtaceae, Polygonaceae, Leguminosae/Caesalpinioideae, Erythroxylaceae, Malphigiaceae, Bromeliaceae, Loganiaceae, Sapotaceae e Celastraceae were found living next to the species of fungi analized. Our results suggest that the area studied is an ectotrophic environment which shows high diversity of putatively ECM fungi and some plants probably host ECM. The tropical lands are a potential focus to study reinforced by the new records of Scleroderma in Brazil and Northwest of Brazil
Resumo:
Studying the physical environment of a watershed is the basic condition for a successful planning of the riparian forest preservation, and for water production and conservation. The aims of the present study were to analyze and quantify the spatial and temporal evolution (1984 and 2010) using Landsat-5 satellite images of Cintra Stream sub-watershed, Botucatu, São Paulo State, Brazil, processed by the software IDRISI Andes, as well as to analyze the water quality through the parameters pH, EC, DO and BOD5 at 4 different sites in the years 1999, 2008 and 2009. Considering the 1076.48ha area of the sub-watershed, the pasture class of 1984 was reduced by 25.55% in 2010, resulting in an increase in the remaining classes. The most important class was native forest and reforestation since it had an increase of 5.08%, which indicates recovery of the riparian forest. Degraded areas were identified close to the inferior limit of the sub-watershed (P3 and P4), as well as local contamination (P1 and P2) with worsening of the water quality in the remaining sites in the periods 2008 and 2009. Recovery and management of the ecological succession of degraded areas and water quality monitoring at 1 and 2 sites will be necessary to reestablish the natural condition of the area studied.