991 resultados para Masonry structures
Resumo:
Slender masonry structures are distributed all over the world and constitute a relevant part of the architectural and cultural heritage of humanity. Their protection against earthquakes is a topic of great concern among the scientific community. This concern mainly arises from the strong damage or complete loss suffered by this group of structures due to catastrophic events and the need and interest to preserve them. Although the great progress in technology, and in the knowledge of seismology and earthquake engineering, the preservation of these brittle and massive structures still represents a major challenge. Based on the research developed in this work it is proposed a methodology for the seismic risk assessment of slender masonry structures. The proposed methodology was applied for the vulnerability assessment of Nepalese Pagoda temples which follow very simple construction procedure and construction detailing in relation to seismic resistance requirements. The work is divided in three main parts. Firstly, particular structural fragilities and building characteristics of the important UNESCO classified Nepalese Pagoda temples which affect their seismic performance and dynamic properties are discussed. In the second part the simplified method proposed for seismic vulnerability assessment of slender masonry structures is presented. Finally, the methodology proposed in this work is applied to study Nepalese Pagoda temples, as well as in the efficiency assessment of seismic performance improvement solution compatible with original cultural and technological value.
Resumo:
The paper describes the preliminary studies of University of Minho on the use of Electric Impedance/Resistance Tomography to assess masonry structures. The study is focused on the analysis of values of current and voltage resulting from the use of an electrical source with voltage and frequency values from a distribution network. The analysis is made from results obtained through computer simulations, using a three-dimensional model of the idealized masonry structures. A finite element program was used for the simulations. Three types of electrodes were used in simulations, and the analysis of the results led to significant conclusions. Later masonry specimens were built and a series of preliminary tests were carried out in the laboratory. The comparative analysis of simulated and experimental results allowed identifying the factors that have influence on the physical results.
Resumo:
In this work seismic upgrading of existing masonry structures by means of hysteretic ADAS dampers is treated. ADAS are installed on external concrete walls, which are built parallel to the building, and then linked to the building's slab by means of steel rod connection system. In order to assess the effectiveness of the intervention, a parametric study considering variation of damper main features has been conducted. To this aim, the concepts of equivalent linear system (ELS) or equivalent viscous damping are deepen. Simplified equivalent linear model results are then checked respect results of the yielding structures. Two alternative displacement based methods for damper design are herein proposed. Both methods have been validated through non linear time history analyses with spectrum compatible accelerograms. Finally ADAS arrangement for the non conventional implementation is proposed.
Resumo:
The assessment of historical structures is a significant need for the next generations, as historical monuments represent the community’s identity and have an important cultural value to society. Most of historical structures built by using masonry which is one of the oldest and most common construction materials used in the building sector since the ancient time. Also it is considered a complex material, as it is a composition of brick units and mortar, which affects the structural performance of the building by having different mechanical behaviour with respect to different geometry and qualities given by the components.
Resumo:
Partially grouted wider reinforced masonry wall, built predominantly using face shell bedded hollow concrete blocks, is an economical structural system and is popularly used in the cyclonic areas; its out-of-plane response to lateral loading is well understood, unfortunately its inplane shear behaviour is less well understood as to the effect of partial gouting in intervening the load paths within the wall. For rational analysis of the wall clarification is sought as to whether the wall acts as a composite of unreinforced panels and reinforced cores or as a continuum of masonry embedded with reinforced at wider spacing. This paper reports the results of four full scale walls tested under inplane cyclic shear loading to provide some insight into the effect of the grout cores in altering the load paths within the wall. The global lateral load - lateral deflection hysteric curves as well as local responses of some critical zones of the shear walls are presented.
Resumo:
In-plane shear capacity formulation of reinforced masonry is commonly conceived as the sum of the capacities of three parameters, viz, the masonry, the reinforcement, and the precompression. The term “masonry” incorporates the aspect ratio of the wall without any regard to the aspect ratio of the panels inscribed (and hence confined) by the vertical and the horizontal reinforced grout cores. This paper proposes design expressions in which the aspect ratio of such panels is explicitly included. For this purpose, the grouted confining cores are regarded as a grid of confining elements within which the panels are positioned. These confined masonry panels are then considered as building blocks for multi-bay, multi-storied confined masonry shear walls and analyzed using an experimentally validated macroscopic finite-element model. Results of the analyzes of 161 confined masonry walls containing panels of height to length ratio less than 1.0 have been regressed to formulate design expressions. These expressions have been first validated using independent test data sets and then compared with the existing equations in some selected international design standards. The concept of including the unreinforced masonry panel aspect ratio as an additional term in the design expression for partially grouted/confined masonry shear walls is recommended based on the conclusions from this paper.
Resumo:
Masonry under compression is affected by the properties of its constituents and their interfaces. In spite of extensive investigations of the behaviour of masonry under compression, the information in the literature cannot be regarded as comprehensive due to ongoing inventions of new generation products – for example, polymer modified thin layer mortared masonry and drystack masonry. As comprehensive experimental studies are very expensive, an analytical model inspired by damage mechanics is developed and applied to the prediction of the compressive behaviour of masonry in this paper. The model incorporates a parabolic progressively softening stress-strain curve for the units and a progressively stiffening stress-strain curve until a threshold strain for the combined mortar and the unit-mortar interfaces is reached. The model simulates the mutual constraints imposed by each of these constituents through their respective tensile and compressive behaviour and volumetric changes. The advantage of the model is that it requires only the properties of the constituents and considers masonry as a continuum and computes the average properties of the composite masonry prisms/wallettes; it does not require discretisation of prism or wallette similar to the finite element methods. The capability of the model in capturing the phenomenological behaviour of masonry with appropriate elastic response, stiffness degradation and post peak softening is presented through numerical examples. The fitting of the experimental data to the model parameters is demonstrated through calibration of some selected test data on units and mortar from the literature; the calibrated model is shown to predict the responses of the experimentally determined masonry built using the corresponding units and mortar quite well. Through a series of sensitivity studies, the model is also shown to predict the masonry strength appropriately for changes to the properties of the units and mortar, the mortar joint thickness and the ratio of the height of unit to mortar joint thickness. The unit strength is shown to affect the masonry strength significantly. Although the mortar strength has only a marginal effect, reduction in mortar joint thickness is shown to have a profound effect on the masonry strength. The results obtained from the model are compared with the various provisions in the Australian Masonry Structures Standard AS3700 (2011) and Eurocode 6.