845 resultados para Masonry compressive strength


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Masonry under compression is affected by the properties of its constituents and their interfaces. In spite of extensive investigations of the behaviour of masonry under compression, the information in the literature cannot be regarded as comprehensive due to ongoing inventions of new generation products – for example, polymer modified thin layer mortared masonry and drystack masonry. As comprehensive experimental studies are very expensive, an analytical model inspired by damage mechanics is developed and applied to the prediction of the compressive behaviour of masonry in this paper. The model incorporates a parabolic progressively softening stress-strain curve for the units and a progressively stiffening stress-strain curve until a threshold strain for the combined mortar and the unit-mortar interfaces is reached. The model simulates the mutual constraints imposed by each of these constituents through their respective tensile and compressive behaviour and volumetric changes. The advantage of the model is that it requires only the properties of the constituents and considers masonry as a continuum and computes the average properties of the composite masonry prisms/wallettes; it does not require discretisation of prism or wallette similar to the finite element methods. The capability of the model in capturing the phenomenological behaviour of masonry with appropriate elastic response, stiffness degradation and post peak softening is presented through numerical examples. The fitting of the experimental data to the model parameters is demonstrated through calibration of some selected test data on units and mortar from the literature; the calibrated model is shown to predict the responses of the experimentally determined masonry built using the corresponding units and mortar quite well. Through a series of sensitivity studies, the model is also shown to predict the masonry strength appropriately for changes to the properties of the units and mortar, the mortar joint thickness and the ratio of the height of unit to mortar joint thickness. The unit strength is shown to affect the masonry strength significantly. Although the mortar strength has only a marginal effect, reduction in mortar joint thickness is shown to have a profound effect on the masonry strength. The results obtained from the model are compared with the various provisions in the Australian Masonry Structures Standard AS3700 (2011) and Eurocode 6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Masonry strength is dependent upon characteristics of the masonry unit,the mortar and the bond between them. Empirical formulae as well as analytical and finite element (FE) models have been developed to predict structural behaviour of masonry. This paper is focused on developing a three dimensional non-linear FE model based on micro-modelling approach to predict masonry prism compressive strength and crack pattern. The proposed FE model uses multi-linear stress-strain relationships to model the non-linear behaviour of solid masonry unit and the mortar. Willam-Warnke's five parameter failure theory developed for modelling the tri-axial behaviour of concrete has been adopted to model the failure of masonry materials. The post failure regime has been modelled by applying orthotropic constitutive equations based on the smeared crack approach. Compressive strength of the masonry prism predicted by the proposed FE model has been compared with experimental values as well as the values predicted by other failure theories and Eurocode formula. The crack pattern predicted by the FE model shows vertical splitting cracks in the prism. The FE model predicts the ultimate failure compressive stress close to 85 of the mean experimental compressive strength value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil-cement blocks are employed for load bearing masonry buildings. This paper deals with the study on the influence of bed joint thickness and elastic properties of the soil-cement blocks, and the mortar on the strength and behavior of soil-cement block masonry prisms. Influence of joint thickness on compressive strength has been examined through an experimental program. The nature of stresses developed and their distribution, in the block and the mortar of the soil-cement block masonry prism under compression, has been analyzed by an elastic analysis using FEM. Influence of various parameters like joint thickness, ratio of block to mortar modulus, and Poisson's ratio of the block and the mortar are considered in FEM analysis. Some of the major conclusions of the study are: (1) masonry compressive strength is sensitive to the ratio of modulus of block to that of the mortar (Eb/Em) and masonry compressive strength decreases as the mortar joint thickness is increased for the case where the ratio of block to mortar modulus is more than 1; (2) the lateral tensile stresses developed in the masonry unit are sensitive to the Eb/Em ratio and the Poisson's ratio of mortar and the masonry unit; and (3) lateral stresses developed in the masonry unit are more sensitive to the Poisson's ratio of the mortar than the Poisson's ratio of the masonry unit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Australian masonry standard allows either prism tests or correction factors based on the block height and mortar thickness to evaluate masonry compressive strength. The correction factor helps the taller units with conventional 10 mm mortar being not disadvantaged due to size effect. In recent times, 2-4 mm thick, high-adhesive mortars and H blocks with only the mid-web shell are used in masonry construction. H blocks and thinner and higher adhesive mortars have renewed interest of the compression behaviour of hollow concrete masonry and hence is revisited in this paper. This paper presents an experimental study carried out to examine the effects of the thickness of mortar joints, the type of mortar adhesives and the presence of web shells in the hollow concrete masonry prisms under axial compression. A non-contact digital image correlation technique was used to measure the deformation of the prisms and was found adequate for the determination of strain fi eld of the loaded face shells subjected to axial compression. It is found that the absence of end web shells lowers the compressive strength and stiffness of the prisms and the thinner and higher adhesive mortars increase the compressive strength and stiffness, while lowering the Poisson's ratio. © Institution of Engineers Australia, 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partially grouted masonry walls subjected to in-plane shear exhibit a complex behaviour because of the influence of the aspect ratio, the pre-compression, the grouting pattern, the ratios of the horizontal and the vertical reinforcements, the boundary conditions and the characteristics of the constituent materials. The existing in-plane shear expressions for the partially grouted masonry are formulated as sum of strength of three parameters, namely, the masonry, the reinforcement and the axial force. The parameter ‘masonry’ includes the wall aspect ratio and the masonry compressive strength; the aspect ratio of the unreinforced panel inscribed into the grouted cores and bond beams are not considered, although failure is often dominated by these unreinforced masonry panels. This paper describes the dominance of these panels, particularly those that are squat, to the shear capacity of whole of shear walls. Further, the current design formulae are shown highly un-conservative by many researchers; this paper provides a potential reason for this un-conservativeness. It is shown that by including an additional term of the unreinforced panel aspect ratio a rational design formula could be established. This new expression is validated with independent test results reported in the literature – both Australian and overseas; the predictions are shown to be conservative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al-Li-SiCp composites were fabricated by a simple and cost effective stir casting technique. A compound billet technique has been developed to overcome the problems encountered during hot extrusion of these composites. After successful fabrication hardness measurement and room temperature compressive test were carried out on 8090 Al and its composites reinforced with 8, 12 and 18vol.% SiC particles in as extruded and peak aged conditions. The addition of SiC increases the hardness. 0.2% proof stress and compressive strength of Al-Li-8%SiC and Al-Li-12%SiC composites are higher than the unreinforced alloy. in case of the Al-Li-18%SiC composite, the 0.2% proof stress and compressive strength were higher than the unreinforced alloy but lower than those of Al-Li-8%SiC and Al-Li-12%SiC composites. This is attributed to clustering of particles and poor interfacial bonding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An artificial neural network (ANN) is presented to predict a 28-day compressive strength of a normal and high strength self compacting concrete (SCC) and high performance concrete (HPC) with high volume fly ash. The ANN is trained by the data available in literature on normal volume fly ash because data on SCC with high volume fly ash is not available in sufficient quantity. Further, while predicting the strength of HPC the same data meant for SCC has been used to train in order to economise on computational effort. The compressive strengths of SCC and HPC as well as slump flow of SCC estimated by the proposed neural network are validated by experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strength and behaviour of cement stabilised rammed earth (CSRE) is a scantily explored area. The present study is focused on the strength and elastic properties of CSRE. Characteristics of CSRE are influenced by soil composition, density of rammed earth, cement and moisture content. The study is focused on examining (a) role of clay content of the soil on strength of CSRE and arriving at optimum clay fraction of the soil mix, (b) influence of moisture content, cement content and density on strength and (c) stress-strain relationships and elastic properties for CSRE. Major conclusions are (a) there is considerable difference between dry and wet compressive strength of CSRE and the wet to dry strength ratio depends upon the clay fraction of soil mix and cement content, (b) optimum clay fraction yielding maximum compressive strength for CSRE is about 16%, (c) strength of CSRE is highly sensitive to density and for a 20% increase in density the strength increases by 300-500% and (d) in dry state the ultimate strain at failure for CSRE is as high as 1.5%, which is unusual for brittle materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compressive strength of epoxy with "free-inforcement" flyash without any prior separation is studied. It is observed that the increase in filler volume fraction beyond 10% brings about a reduction in the compressive strength. Increasing adhesion factor, determined relative to unfilled matrix, implied an alleviation in the interfacial adhesion due to dewetting, especially at the surfaces of larger particles and at higher filler concentrations. Such deductions were verified by examining the surface features of compression tested samples in Scanning Electron Microscope.