960 resultados para Marxan with Zones
Resumo:
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i3p31
Resumo:
Well-designed marine protected area (MPA) networks can deliver a range of ecological, economic and social benefits, and so a great deal of research has focused on developing spatial conservation prioritization tools to help identify important areas. However, whilst these software tools are designed to identify MPA networks that both represent biodiversity and minimize impacts on stakeholders, they do not consider complex ecological processes. Thus, it is difficult to determine the impacts that proposed MPAs could have on marine ecosystem health, fisheries and fisheries sustainability. Using the eastern English Channel as a case study, this paper explores an approach to address these issues by identifying a series of MPA networks using the Marxan and Marxan with Zones conservation planning software and linking them with a spatially explicit ecosystem model developed in Ecopath with Ecosim. We then use these to investigate potential trade-offs associated with adopting different MPA management strategies. Limited-take MPAs, which restrict the use of some fishing gears, could have positive benefits for conservation and fisheries in the eastern English Channel, even though they generally receive far less attention in research on MPA network design. Our findings, however, also clearly indicate that no-take MPAs should form an integral component of proposed MPA networks in the eastern English Channel, as they not only result in substantial increases in ecosystem biomass, fisheries catches and the biomass of commercially valuable target species, but are fundamental to maintaining the sustainability of the fisheries. Synthesis and applications. Using the existing software tools Marxan with Zones and Ecopath with Ecosim in combination provides a powerful policy-screening approach. This could help inform marine spatial planning by identifying potential conflicts and by designing new regulations that better balance conservation objectives and stakeholder interests. In addition, it highlights that appropriate combinations of no-take and limited-take marine protected areas might be the most effective when making trade-offs between long-term ecological benefits and short-term political acceptability.
Resumo:
A number of systematic conservation planning tools are available to aid in making land use decisions. Given the increasing worldwide use and application of reserve design tools, including measures of site irreplaceability, it is essential that methodological differences and their potential effect on conservation planning outcomes are understood. We compared the irreplaceability of sites for protecting ecosystems within the Brigalow Belt Bioregion, Queensland, Australia, using two alternative reserve system design tools, Marxan and C-Plan. We set Marxan to generate multiple reserve systems that met targets with minimal area; the first scenario ignored spatial objectives, while the second selected compact groups of areas. Marxan calculates the irreplaceability of each site as the proportion of solutions in which it occurs for each of these set scenarios. In contrast, C-Plan uses a statistical estimate of irreplaceability as the likelihood that each site is needed in all combinations of sites that satisfy the targets. We found that sites containing rare ecosystems are almost always irreplaceable regardless of the method. Importantly, Marxan and C-Plan gave similar outcomes when spatial objectives were ignored. Marxan with a compactness objective defined twice as much area as irreplaceable, including many sites with relatively common ecosystems. However, targets for all ecosystems were met using a similar amount of area in C-Plan and Marxan, even with compactness. The importance of differences in the outcomes of using the two methods will depend on the question being addressed; in general, the use of two or more complementary tools is beneficial.
Resumo:
By means of self-consistent three-dimensional magnetohydrodynamics (MHD) numerical simulations, we analyze magnetized solar-like stellar winds and their dependence on the plasma-beta parameter (the ratio between thermal and magnetic energy densities). This is the first study to perform such analysis solving the fully ideal three-dimensional MHD equations. We adopt in our simulations a heating parameter described by gamma, which is responsible for the thermal acceleration of the wind. We analyze winds with polar magnetic field intensities ranging from 1 to 20 G. We show that the wind structure presents characteristics that are similar to the solar coronal wind. The steady-state magnetic field topology for all cases is similar, presenting a configuration of helmet streamer-type, with zones of closed field lines and open field lines coexisting. Higher magnetic field intensities lead to faster and hotter winds. For the maximum magnetic intensity simulated of 20 G and solar coronal base density, the wind velocity reaches values of similar to 1000 km s(-1) at r similar to 20r(0) and a maximum temperature of similar to 6 x 10(6) K at r similar to 6r(0). The increase of the field intensity generates a larger ""dead zone"" in the wind, i.e., the closed loops that inhibit matter to escape from latitudes lower than similar to 45 degrees extend farther away from the star. The Lorentz force leads naturally to a latitude-dependent wind. We show that by increasing the density and maintaining B(0) = 20 G the system recover back to slower and cooler winds. For a fixed gamma, we show that the key parameter in determining the wind velocity profile is the beta-parameter at the coronal base. Therefore, there is a group of magnetized flows that would present the same terminal velocity despite its thermal and magnetic energy densities, as long as the plasma-beta parameter is the same. This degeneracy, however, can be removed if we compare other physical parameters of the wind, such as the mass-loss rate. We analyze the influence of gamma in our results and we show that it is also important in determining the wind structure.
Resumo:
Rhynchonelliform brachiopods were diverse and often dominant benthos of tropical seas in the Paleozoic. In contrast, they are believed to be rare in open habitats of modern oceans, especially at low latitudes. This study documents numerous occurrences of rhynchonelliform brachiopods on a modern tropical shelf, particularly in areas influenced by upwelling. Extensive sampling of the outer shelf and coastal bays of the Southeast Brazilian Bight revealed dense populations of terebratulid brachiopods (>10(3) individuals /m(2) of seafloor) between 24 and 26 S. on the outer shelf, brachiopods are more abundant than bivalves and gastropods combined. However, brachiopod diversity is low: only four species belonging to the genera Bouchardia, Terebratulina, Argyrotheca, and Platidia were identified among over 16000 examined specimens. Brachiopods occur preferentially on carbonate bottoms and include two substrate-related associations: Bouchardia (40-70% CaCO3, weight content) and Terebratulina-Argyrotheca (70-95% CaCO3). All four species display a broad bathymetric range that contrasts with a narrow depth tolerance postulated for many Paleozoic rhynchonelliforms. The most abundant populations occur in the depth range between 100 and 200 m, and coincide with zones of shelf-break upwelling, where relatively colder and nutrient-rich water masses of the South Atlantic Central Water are brought upward by cyclonic meanders of the South Brazil Current (a western boundary current that flows poleward along the coast of Brazil). This is consistent with previous biological and paleontological studies that suggest upwelling may play a role in sustaining brachiopod-dominated benthic associations. The presence of abundant brachiopods in the open habitats of the tropical shelf of the western South Atlantic contrasts with current understanding of their latitudinal distribution and points to major gaps in our knowledge of their present-day biogeography. The ecological importance of rhynchonelliform brachiopods in modern oceans and their role as producers of biogenic sedimentary particles may be underestimated.
Resumo:
Background: Very few mitochondrial myopathies have been described in horses. Objective: To examine the ultrastructure of muscle mitochondria in equine cases of myopathy of unknown origin. Materials & methods: Biopsies of vastus lateralis of the Musculus quadriceps femoris were taken predominantly immediately post mortem and processed for transmission electron microscopy. As a result, electron micrographs of 90 horses in total were available for analysis comprising 4 control horses, 16 horses suffering from myopathy and 70 otherwise diseased horses. Results: Following a thorough clinical and laboratory work-up, four out of five patients that did not fit into the usual algorithm to detect known causes of myopathy showed ultrastructural mitochondrial alterations. Small mitochondria with zones with complete disruption of cristae associated with lactic acidemia were detected in a 17-year-old pony mare, extremely long and slender mitochondria with longitudinal cristae in a 5-year-old Quarter horse stallion, a mixture of irregular extremely large mitochondria (measuring 2500 by 800 nm) next to smaller ones in an 8-year-old Hanoverian mare and round mitochondria with only few cristae in a 11-year-old pony gelding. It remains uncertain whether the subsarcolemmal mitochondrial accumulations observed in the fifth patient have any pathological significance. Conclusions: Ultrastructural alterations in mitochondria were detected in at least four horses. To conclude that these are due to mitochondrial dysfuntions, biochemical tests should be performed. Practical applications: The possibility of a mitochondrial myopathy should be included in the differential diagnosis of muscle weakness.
Resumo:
Wetlands store large amounts of carbon, and depending on their status and type, they release specific amounts of methane gas to the atmosphere. The connection between wetland type and methane emission has been investigated in various studies and utilized in climate change monitoring and modelling. For improved estimation of methane emissions, land surface models require information such as the wetland fraction and its dynamics over large areas. Existing datasets of wetland dynamics present the total amount of wetland (fraction) for each model grid cell, but do not discriminate the different wetland types like permanent lakes, periodically inundated areas or peatlands. Wetland types differently influence methane fluxes and thus their contribution to the total wetland fraction should be quantified. Especially wetlands of permafrost regions are expected to have a strong impact on future climate due to soil thawing. In this study ENIVSAT ASAR Wide Swath data was tested for operational monitoring of the distribution of areas with a long-term SW near 1 (hSW) in northern Russia (SW = degree of saturation with water, 1 = saturated), which is a specific characteristic of peatlands. For the whole northern Russia, areas with hSW were delineated and discriminated from dynamic and open water bodies for the years 2007 and 2008. The area identified with this method amounts to approximately 300,000 km**2 in northern Siberia in 2007. It overlaps with zones of high carbon storage. Comparison with a range of related datasets (static and dynamic) showed that hSW represents not only peatlands but also temporary wetlands associated with post-forest fire conditions in permafrost regions. Annual long-term monitoring of change in boreal and tundra environments is possible with the presented approach. Sentinel-1, the successor of ENVISAT ASAR, will provide data that may allow continuous monitoring of these wetland dynamics in the future complementing global observations of wetland fraction.
Resumo:
Three Antarctic Ocean K/T boundary sequences from ODP Site 738C on the Kerguelen Plateau, ODP Site, 752B on Broken Ridge and ODP Site 690C on Maud Rise, Weddell Sea, have been analyzed for stratigraphic completeness and faunal turnover based on quantitative planktic foraminiferal studies. Results show that Site 738C, which has a laminated clay layer spanning the K/T boundary, is biostratigraphically complete with the earliest Tertiary Zones P0 and P1a present, but with short intrazonal hiatuses. Site 752B may be biostratigraphically complete and Site 690C has a hiatus at the K/T boundary with Zones P0 and P1a missing. Latest Cretaceous to earliest Tertiary planktic foraminiferal faunas from the Antarctic Ocean are cosmopolitan and similar to coeval faunas dominating in low, middle and northern high latitudes, although a few endemic species are present. This allows application of the current low and middle latitude zonation to Antarctic K/T boundary sequences. The most abundant endemic species is Chiloguembelina waiparaensis, which was believed to have evolved in the early Tertiary, but which apparently evolved as early as Chron 30N at Site 738C. Since this species is only rare in sediments of Site 690C in the Weddell Sea, this suggests that a watermass oceanographic barner may have existed between the Indian and Atlantic Antarctic Oceans. The cosmopolitan nature of the dominant fauna began during the last 200,000 to 300,000 years of the Cretaceous and continued at least 300,000 years into the Tertiary. This indicates a long-term environmental crisis that led to gradual elimination of specialized forms and takeover by generalists tolerant of wide ranging temperature, oxygen, salinity and nutrient conditions. A few thousand years before the K/T boundary these generalists gradually declined in abundance and species became generally dwarfed due to increased environmental stress. There is no evidence of a sudden mass killing of the Cretaceous fauna associated with a bolide impact at the K/T boundary. Instead, the already declining Cretaceous taxa gradually disappear in the early Danian and the opportunistic survivor taxa (Ch. waiparaensis and Guembelitria cretacea) increase in relative abundance coincident with the evolution of the first new Tertiary species.
Resumo:
We performed hydrous partial melting experiments at shallow pressures (0.2 GPa) under slightly oxidizing conditions (NNO oxygen buffer) on oceanic cumulate gabbros drilled by ODP (Ocean Drilling Program) cruises to evaluate whether the partial melting of oceanic gabbro can generate SiO2-rich melts with compositions typical of oceanic plagiogranites. The experimental melts of the low-temperature runs broadly overlap those of natural plagiogranites. At 940 °C, the normalized SiO2 contents of the experimental melts of all systems range between 60 and 61 wt%, and at 900 °C between 63 and 68 wt%. These liquids are characterized by low TiO2 and FeOtot contents, similar to those of natural plagiogranites from the plutonic section of the oceanic crust, but in contrast to Fe and Ti-rich low-temperature experimental melts obtained in MORB systems at ~950 °C. The ~1,500-m-long drilled gabbroic section of ODP Hole 735B (Legs 118 and 176) at the Southwest Indian Ridge contains numerous small plagiogranitic veins often associated with zones which are characterized by high-temperature shearing. The compositions of the experimental melts obtained at low temperatures match those of the natural plagiogranitic veins, while the compositions of the crystals of low-temperature runs correspond to those of minerals from high-temperature microscopic veins occurring in the gabbroic section of the Hole 735B. This suggests that the observed plagiogranitic veins are products of a partial melting process triggered by a water-rich fluid phase. If the temperature estimations for hightemperature shear zones are correct (up to 1,000 °C), and a water-rich fluid phase is present, the formation of plagiogranites by partial melting of gabbros is probably a widespread phenomenon in the genesis of the ocean crust.
Resumo:
Laboratory compressional wave (Vp) and shear wave (Vs) velocities were measured as a function of confining pressure for the gabbros from Hole 735B and compared to results from Leg 118. The upper 500 m of the hole has a Vp mean value of 6895 m/s measured at 200 MPa, and at 500 meters below seafloor (mbsf), Vp measurements show a mean value of 7036 m/s. Vs mean values in the same intervals are 3840 m/s and 3857 m/s, respectively. The mean Vp and Vs values obtained from log data in the upper 600 m are 6520 and 3518 m/s, respectively. These results show a general increase in velocity with depth and the velocity gradients estimate an upper mantle depth of 3.32 km. This value agrees with previous work based on dredged samples and inversion of rare element concentrations in basalts dredged from the conjugate site to the north of the Atlantis Bank. Laboratory measurements show Vp anisotropy ranging between 0.4% and 8.8%, with the majority of the samples having values less than 3.8%. Measurements of velocity anisotropy seem to be associated with zones of high crystal-plastic deformation with predominant preferred mineral orientations of plagioclase, amphiboles, and pyroxenes. These findings are consistent with results on gabbros from the Hess Deep area and suggest that plastic deformation may play an important role in the seismic properties of the lower oceanic crust. In contrast to ophiolite studies, many of the olivine gabbros show a small degree of anisotropy. Log derived Vs anisotropy shows an average of 5.8% for the upper 600 m of Hole 735B and tends to decrease with depth where the overburden pressure and the age of the crustal section suggests closure of cracks and infilling of fractures by alteration minerals. Overall the results indicate that the average shear wave splitting in Hole 735B might be influenced by preferred structural orientations and the average value of shear wave splitting may not be a maximum because structural dips are <90°. The maximum fast-wave orientation values could be influenced by structural features striking slightly oblique to this orientation or by near-field stress concentrations. However, flexural wave dispersion analyses have not been performed to confirm this hypothesis or to indicate to what extent the near-field stresses may be influencing shear wave propagation. Acoustic impedance contrasts calculated from laboratory and logging data were used to generate synthetic seismograms that aid in the interpretation of reflection profiles. Several prominent reflections produced by these calculations suggest that Fe-Ti oxides and shear zones may contribute to the reflective nature of the lower oceanic crust. Laboratory velocity attenuation (Q) measurements from below 500 m have a mean value of 35.1, which is consistent with previous vertical seismic profile (VSP) and laboratory measurements on the upper 500 m.
Resumo:
Total organic carbon (TOC), dissolved organic carbon (DOC), total hydrolyzable amino acids (THAA), amino sugars (THAS), and carbohydrates (THCHO) were measured in sediments and interstitial waters from Site 681 (ODP Leg 112). TOC concentrations vary between 0.75% and 8.2% by weight of dry sediment and exhibit a general decrease with depth. DOC concentrations range from 6.1 to 49.5 mg/L, but do not correlate with TOC concentrations in the sediment. Amino compounds (AA and AS) and sugars account for 0.5% to 8% and 0.5% to 3% of TOC, respectively, while amino compounds make up between 2% and 27% of total nitrogen. Dissolved hydrolyzable amino acids (free and combined) and amino sugars were found in concentrations from 3.7 to 150 µM and from 0.1 to 3.7 µM, respectively, and together account for an average of 8.5% of DOC. Dissolved hydrolyzable carbohydrates are in the range of 6 to 49 µM. Amino acid spectra are dominated by glycine, alanine, leucine, and phenylalanine; nonproteinaceous amino acids (gamma-amino butyric acid, beta-alanine, and ornithine) are enriched in the deeper part of the section, gamma-amino butyric acid and beta-alanine are thought to be indicators of continued microbial degradation of TOC. Glycine, serine, glutamic acid, alanine, aspartic acid, and ornithine are the dominating amino compounds in the pore waters. Spectra of carbohydrates in sediments are dominated by glucose, galactose, and mannose, while dissolved sugars are dominated by glucose and fructose. In contrast to the lack of correlation between abundances of bulk TOC and DOC in corresponding interstitial waters, amino compounds and sugars do show some correlation between sediments and pore waters: A depth increase of aspartic acid, serine, glycine, and glutamic acid in the pore waters is reflected in a decrease in the sediment, while an enrichment in valine, iso-leucine, leucine, and phenylalanine in the sediment is mirrored by a decrease in the interstitial waters. The distribution of individual hexoseamines appears to be related to zones of bacterial decomposition of organic matter. Low glucoseamine to galactoseamine ratios coincide with zones of sulfate depletion in the interstitial waters.
Resumo:
The concentrations and isotopic compositions of strontium in interstitial waters from several DSDP sites, where sediments consist chiefly of carbonate oozes and chalks, are used as indicators of carbonate diagenesis by reference to a recently-produced curve showing detailed variations in the 87Sr/86Sr ratio of seawater with time. Carbonate sediments of the Walvis Ridge show increases in interstitial Sr[2+] concentrations in the upper carbonate-ooze sections with the highest concentrations near the ooze-chalk boundary where maximum rates of carbonate recrystallization occur. Below this, in situ production of Sr[2+] diminishes and there is a diffusive flux of Sr to an underlying sink, presumably volcanogenic sediments or basalts, leading to Sr isotopic disequilibrium between carbonates and interstitial waters. In some other sites, however, there is no apparent Sr sink at depth and isotopic equilibrium is retained. Overall, diffusive smoothing of profiles exerts an important control on the 87Sr/86Sr ratios, although lower ratios than contemporaneous seawater values in the carbonate oozes often correlate with zones of Mg[2+] loss and reflect a combination of a flux of Sr[2+] from the zone of maximum recrystallization rates together with a contribution from the in situ alteration of volcanic matter.
Resumo:
This paper highlights the potential benefits of smoke recovery from the production of biochar in crop management through it application as an antimicrobial agent against plant disease and as a pesticide. The study reports on the findings of zone inhibition assays on selected plant pathogens (Agrobacterium tumefacien and Xanthomonas campestris), growth studies on selected plants (Raphanus sativus and Vicia faba), and toxicity studies performed on arthropods (Myzus persicae and Tetranychus urticae). The results suggested a strong benefit to crop management in terms of crop protection against selected causal agents responsible for plant disease, with zones of inhibition observed on both Agrobacterium tumefacien and Xanthomonas campestris when inoculated with pyroligneous acid (liquid smoke) at 10% dilution. Similarly, its potential as a bio-pesticide are favorable, with a reported 20%–30% of arthropods affected (knocked out/mortality) after exposure for 48 hours.
Resumo:
During Legs 118 and 176, Ocean Drilling Program Hole 735B, located on Atlantis Bank on the Southwest Indian Ridge, was drilled to a total depth of 1508 meters below seafloor (mbsf) with nearly 87% recovery. The recovered core provides a unique section of oceanic Layer 3 produced at an ultraslow spreading ridge. Metamorphism and alteration are extensive in the section but decrease markedly downward. Both magmatic and hydrothermal veins are present in the core, and these were active conduits for melt and fluid in the crust. We have identified seven major types of veins in the core: felsic and plagioclase rich, plagioclase + amphibole, amphibole, diopside and diopside + plagioclase, smectite ± prehnite ± carbonate, zeolite ± prehnite ± carbonate, and carbonate. A few epidote and chlorite veins are also present but are volumetrically insignificant. Amphibole veins are most abundant in the upper 50 m of the core and disappear entirely below 520 mbsf. Felsic and plagioclase ± amphibole ± diopside veins dominate between ~50 and 800 mbsf, and low-temperature smectite, zeolite, and prehnite veins are present in the lower 500 m of the core. Carbonate veinlets are randomly present throughout the core but are most abundant in the lower portions. The amphibole veins are closely associated with zones of intense crystal plastic deformation formed at the brittle/ductile boundary at temperatures above 700°C. The felsic and plagioclase-rich veins were formed originally by late magmatic fluids at temperatures above 800°C, but nearly all of these have been overprinted by intense hydrothermal alteration at temperatures between 300° and 600°C. The zeolite, prehnite, and smectite veins formed at temperatures <100°C. The chemistry of the felsic veins closely reflects their dominant minerals, chiefly plagioclase and amphibole. The plagioclase is highly zoned with cores of calcic andesine and rims of sodic oligoclase or albite. In the felsic veins the amphibole ranges from magnesio-hornblende to actinolite or ferro-actinolite, whereas in the monomineralic amphibole veins it is largely edenite and magnesio-hornblende. Diopside has a very narrow range of composition but does exhibit some zoning in Fe and Mg. The felsic and plagioclase-rich veins were originally intruded during brittle fracture at the ridge crest. The monomineralic amphibole veins also formed near the ridge axis during detachment faulting at a time of low magmatic activity. The overprinting of the igneous veins and the formation of the hydrothermal veins occurred as the crustal section migrated across the floor of the rift valley over a period of ~500,000 yr. The late-stage, low-temperature veins were deposited as the section migrated out of the rift valley and into the transverse ridge along the margin of the fracture zone.
Resumo:
Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9 degrees 50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (RXAS) and X-ray diffraction (mu XRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe -bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of delta Fe-57 values up to 6 parts per thousand. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. These micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.