911 resultados para Markov-Switching Regimes, Hidden States, Taylor Rule
Resumo:
This work empirically evaluates the Taylor rule for the US and Brazil using Markov-Switching Regimes. I find that the inflation parameter of the US Taylor rule is less than one in many periods, contrasting heavily with Clarida, Gal´ı and Gertler (2000), and the same happens with Brazilian data. When the inflation parameter is greater than one, it encompasses periods that these authors considered they should be less than one. Brazil is used for comparative purposes because it experienced a high level inflation until 1994 and then a major stabilization plan reduced the growth in prices to civilized levels. Thus, it is a natural laboratory to test theories designed to work in any environment. The findings point to a theoretical gap that deserves further investigation and show that monetary policy in Brazil has been ineffective, which is coherent with the general attitude of population in relation to this measure.
Resumo:
This work evaluates empirically the Taylor rule for the US and Brazil using Kalman Filter and Markov-Switching Regimes. We show that the parameters of the rule change significantly with variations in both output and output gap proxies, considering hidden variables and states. Such conclusions call naturally for robust optimal monetary rules. We also show that Brazil and US have very contrasting parameters, first because Brazil presents time-varying intercept, second because of the rigidity in the parameters of the Brazilian Taylor rule, regardless the output gap proxy, data frequency or sample data. Finally, we show that the long-run inflation parameter of the US Taylor rule is less than one in many periods, contrasting strongly with Orphanides (forthcoming) and Clarida, Gal´i and Gertler (2000), and the same happens with Brazilian monthly data.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
Tests for business cycle asymmetries are developed for Markov-switching autoregressive models. The tests of deepness, steepness, and sharpness are Wald statistics, which have standard asymptotics. For the standard two-regime model of expansions and contractions, deepness is shown to imply sharpness (and vice versa), whereas the process is always nonsteep. Two and three-state models of U.S. GNP growth are used to illustrate the approach, along with models of U.S. investment and consumption growth. The robustness of the tests to model misspecification, and the effects of regime-dependent heteroscedasticity, are investigated.
Resumo:
Market timing performance of mutual funds is usually evaluated with linear models with dummy variables which allow for the beta coefficient of CAPM to vary across two regimes: bullish and bearish market excess returns. Managers, however, use their predictions of the state of nature to deÞne whether to carry low or high beta portfolios instead of the observed ones. Our approach here is to take this into account and model market timing as a switching regime in a way similar to Hamilton s Markov-switching GNP model. We then build a measure of market timing success and apply it to simulated and real world data.
Resumo:
A determinação da taxa de juros estrutura a termo é um dos temas principais da gestão de ativos financeiros. Considerando a grande importância dos ativos financeiros para a condução das políticas econômicas, é fundamental para compreender a estrutura que é determinado. O principal objetivo deste estudo é estimar a estrutura a termo das taxas de juros brasileiras, juntamente com taxa de juros de curto prazo. A estrutura a termo será modelado com base em um modelo com uma estrutura afim. A estimativa foi feita considerando a inclusão de três fatores latentes e duas variáveis macroeconômicas, através da técnica Bayesiana da Cadeia de Monte Carlo Markov (MCMC).
Resumo:
This paper investigates economic growth’s pattern of variation across and within countries using a Time-Varying Transition Matrix Markov-Switching Approach. The model developed follows the approach of Pritchett (2003) and explains the dynamics of growth based on a collection of different states, each of which has a sub-model and a growth pattern, by which countries oscillate over time. The transition matrix among the different states varies over time, depending on the conditioning variables of each country, with a linear dynamic for each state. We develop a generalization of the Diebold’s EM Algorithm and estimate an example model in a panel with a transition matrix conditioned on the quality of the institutions and the level of investment. We found three states of growth: stable growth, miraculous growth, and stagnation. The results show that the quality of the institutions is an important determinant of long-term growth, whereas the level of investment has varying roles in that it contributes positively in countries with high-quality institutions but is of little relevance in countries with medium- or poor-quality institutions.
Resumo:
In this paper, we deal with a generalized multi-period mean-variance portfolio selection problem with market parameters Subject to Markov random regime switchings. Problems of this kind have been recently considered in the literature for control over bankruptcy, for cases in which there are no jumps in market parameters (see [Zhu, S. S., Li, D., & Wang, S. Y. (2004). Risk control over bankruptcy in dynamic portfolio selection: A generalized mean variance formulation. IEEE Transactions on Automatic Control, 49, 447-457]). We present necessary and Sufficient conditions for obtaining an optimal control policy for this Markovian generalized multi-period meal-variance problem, based on a set of interconnected Riccati difference equations, and oil a set of other recursive equations. Some closed formulas are also derived for two special cases, extending some previous results in the literature. We apply the results to a numerical example with real data for Fisk control over bankruptcy Ill a dynamic portfolio selection problem with Markov jumps selection problem. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We consider an optimal control problem with a deterministic finite horizon and state variable dynamics given by a Markov-switching jump–diffusion stochastic differential equation. Our main results extend the dynamic programming technique to this larger family of stochastic optimal control problems. More specifically, we provide a detailed proof of Bellman’s optimality principle (or dynamic programming principle) and obtain the corresponding Hamilton–Jacobi–Belman equation, which turns out to be a partial integro-differential equation due to the extra terms arising from the Lévy process and the Markov process. As an application of our results, we study a finite horizon consumption– investment problem for a jump–diffusion financial market consisting of one risk-free asset and one risky asset whose coefficients are assumed to depend on the state of a continuous time finite state Markov process. We provide a detailed study of the optimal strategies for this problem, for the economically relevant families of power utilities and logarithmic utilities.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
This paper investigates underlying changes in the UK economy over the past thirtyfive years using a small open economy DSGE model. Using Bayesian analysis, we find UK monetary policy, nominal price rigidity and exogenous shocks, are all subject to regime shifting. A model incorporating these changes is used to estimate the realised monetary policy and derive the optimal monetary policy for the UK. This allows us to assess the effectiveness of the realised policy in terms of stabilising economic fluctuations, and, in turn, provide an indication of whether there is room for monetary authorities to further improve their policies.
Resumo:
Although financial theory rests heavily upon the assumption that asset returns are normally distributed, value indices of commercial real estate display significant departures from normality. In this paper, we apply and compare the properties of two recently proposed regime switching models for value indices of commercial real estate in the US and the UK, both of which relax the assumption that observations are drawn from a single distribution with constant mean and variance. Statistical tests of the models' specification indicate that the Markov switching model is better able to capture the non-stationary features of the data than the threshold autoregressive model, although both represent superior descriptions of the data than the models that allow for only one state. Our results have several implications for theoretical models and empirical research in finance.