869 resultados para Markov chains hidden Markov models Viterbi algorithm Forward-Backward algorithm maximum likelihood
Resumo:
The discrete-time Markov chain is commonly used in describing changes of health states for chronic diseases in a longitudinal study. Statistical inferences on comparing treatment effects or on finding determinants of disease progression usually require estimation of transition probabilities. In many situations when the outcome data have some missing observations or the variable of interest (called a latent variable) can not be measured directly, the estimation of transition probabilities becomes more complicated. In the latter case, a surrogate variable that is easier to access and can gauge the characteristics of the latent one is usually used for data analysis. ^ This dissertation research proposes methods to analyze longitudinal data (1) that have categorical outcome with missing observations or (2) that use complete or incomplete surrogate observations to analyze the categorical latent outcome. For (1), different missing mechanisms were considered for empirical studies using methods that include EM algorithm, Monte Carlo EM and a procedure that is not a data augmentation method. For (2), the hidden Markov model with the forward-backward procedure was applied for parameter estimation. This method was also extended to cover the computation of standard errors. The proposed methods were demonstrated by the Schizophrenia example. The relevance of public health, the strength and limitations, and possible future research were also discussed. ^
Resumo:
We introduce the notation of Markov chains and their properties, and give the definition of ergodic, irreducible and aperiodic chains with correspective examples. Then, the definition of hidden Markov models is given and their characteristics are examined. We formulate three basic problems regarding the hidden Markov models and discuss the solution of two of them - the Viterbi algorithm and the forward-backward algorithm.
Resumo:
Conventional Hidden Markov models generally consist of a Markov chain observed through a linear map corrupted by additive noise. This general class of model has enjoyed a huge and diverse range of applications, for example, speech processing, biomedical signal processing and more recently quantitative finance. However, a lesser known extension of this general class of model is the so-called Factorial Hidden Markov Model (FHMM). FHMMs also have diverse applications, notably in machine learning, artificial intelligence and speech recognition [13, 17]. FHMMs extend the usual class of HMMs, by supposing the partially observed state process is a finite collection of distinct Markov chains, either statistically independent or dependent. There is also considerable current activity in applying collections of partially observed Markov chains to complex action recognition problems, see, for example, [6]. In this article we consider the Maximum Likelihood (ML) parameter estimation problem for FHMMs. Much of the extant literature concerning this problem presents parameter estimation schemes based on full data log-likelihood EM algorithms. This approach can be slow to converge and often imposes heavy demands on computer memory. The latter point is particularly relevant for the class of FHMMs where state space dimensions are relatively large. The contribution in this article is to develop new recursive formulae for a filter-based EM algorithm that can be implemented online. Our new formulae are equivalent ML estimators, however, these formulae are purely recursive and so, significantly reduce numerical complexity and memory requirements. A computer simulation is included to demonstrate the performance of our results. © Taylor & Francis Group, LLC.
Resumo:
A two-time scale stochastic approximation algorithm is proposed for simulation-based parametric optimization of hidden Markov models, as an alternative to the traditional approaches to ''infinitesimal perturbation analysis.'' Its convergence is analyzed, and a queueing example is presented.
Resumo:
This paper develops the model of Bicego, Grosso, and Otranto (2008) and applies Hidden Markov Models to predict market direction. The paper draws an analogy between financial markets and speech recognition, seeking inspiration from the latter to solve common issues in quantitative investing. Whereas previous works focus mostly on very complex modifications of the original hidden markov model algorithm, the current paper provides an innovative methodology by drawing inspiration from thoroughly tested, yet simple, speech recognition methodologies. By grouping returns into sequences, Hidden Markov Models can then predict market direction the same way they are used to identify phonemes in speech recognition. The model proves highly successful in identifying market direction but fails to consistently identify whether a trend is in place. All in all, the current paper seeks to bridge the gap between speech recognition and quantitative finance and, even though the model is not fully successful, several refinements are suggested and the room for improvement is significant.
Resumo:
Among the largest resources for biological sequence data is the large amount of expressed sequence tags (ESTs) available in public and proprietary databases. ESTs provide information on transcripts but for technical reasons they often contain sequencing errors. Therefore, when analyzing EST sequences computationally, such errors must be taken into account. Earlier attempts to model error prone coding regions have shown good performance in detecting and predicting these while correcting sequencing errors using codon usage frequencies. In the research presented here, we improve the detection of translation start and stop sites by integrating a more complex mRNA model with codon usage bias based error correction into one hidden Markov model (HMM), thus generalizing this error correction approach to more complex HMMs. We show that our method maintains the performance in detecting coding sequences.
Resumo:
We present a framework for learning in hidden Markov models with distributed state representations. Within this framework, we derive a learning algorithm based on the Expectation--Maximization (EM) procedure for maximum likelihood estimation. Analogous to the standard Baum-Welch update rules, the M-step of our algorithm is exact and can be solved analytically. However, due to the combinatorial nature of the hidden state representation, the exact E-step is intractable. A simple and tractable mean field approximation is derived. Empirical results on a set of problems suggest that both the mean field approximation and Gibbs sampling are viable alternatives to the computationally expensive exact algorithm.
Resumo:
Hidden Markov Models (HMMs) have been successfully applied to different modelling and classification problems from different areas over the recent years. An important step in using HMMs is the initialisation of the parameters of the model as the subsequent learning of HMM’s parameters will be dependent on these values. This initialisation should take into account the knowledge about the addressed problem and also optimisation techniques to estimate the best initial parameters given a cost function, and consequently, to estimate the best log-likelihood. This paper proposes the initialisation of Hidden Markov Models parameters using the optimisation algorithm Differential Evolution with the aim to obtain the best log-likelihood.
Resumo:
This paper consides the problem of extracting the relationships between two time series in a non-linear non-stationary environment with Hidden Markov Models (HMMs). We describe an algorithm which is capable of identifying associations between variables. The method is applied both to synthetic data and real data. We show that HMMs are capable of modelling the oil drilling process and that they outperform existing methods.
Resumo:
We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.
Resumo:
We present and analyze three different online algorithms for learning in discrete Hidden Markov Models (HMMs) and compare their performance with the Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of the generalization error we draw learning curves in simplified situations and compare the results. The performance for learning drifting concepts of one of the presented algorithms is analyzed and compared with the Baldi-Chauvin algorithm in the same situations. A brief discussion about learning and symmetry breaking based on our results is also presented. © 2006 American Institute of Physics.