991 resultados para Markov additive processes
Resumo:
Cette thèse est principalement constituée de trois articles traitant des processus markoviens additifs, des processus de Lévy et d'applications en finance et en assurance. Le premier chapitre est une introduction aux processus markoviens additifs (PMA), et une présentation du problème de ruine et de notions fondamentales des mathématiques financières. Le deuxième chapitre est essentiellement l'article "Lévy Systems and the Time Value of Ruin for Markov Additive Processes" écrit en collaboration avec Manuel Morales et publié dans la revue European Actuarial Journal. Cet article étudie le problème de ruine pour un processus de risque markovien additif. Une identification de systèmes de Lévy est obtenue et utilisée pour donner une expression de l'espérance de la fonction de pénalité actualisée lorsque le PMA est un processus de Lévy avec changement de régimes. Celle-ci est une généralisation des résultats existant dans la littérature pour les processus de risque de Lévy et les processus de risque markoviens additifs avec sauts "phase-type". Le troisième chapitre contient l'article "On a Generalization of the Expected Discounted Penalty Function to Include Deficits at and Beyond Ruin" qui est soumis pour publication. Cet article présente une extension de l'espérance de la fonction de pénalité actualisée pour un processus subordinateur de risque perturbé par un mouvement brownien. Cette extension contient une série de fonctions escomptée éspérée des minima successives dus aux sauts du processus de risque après la ruine. Celle-ci a des applications importantes en gestion de risque et est utilisée pour déterminer la valeur espérée du capital d'injection actualisé. Finallement, le quatrième chapitre contient l'article "The Minimal entropy martingale measure (MEMM) for a Markov-modulated exponential Lévy model" écrit en collaboration avec Romuald Hervé Momeya et publié dans la revue Asia-Pacific Financial Market. Cet article présente de nouveaux résultats en lien avec le problème de l'incomplétude dans un marché financier où le processus de prix de l'actif risqué est décrit par un modèle exponentiel markovien additif. Ces résultats consistent à charactériser la mesure martingale satisfaisant le critère de l'entropie. Cette mesure est utilisée pour calculer le prix d'une option, ainsi que des portefeuilles de couverture dans un modèle exponentiel de Lévy avec changement de régimes.
Resumo:
Before signing electronic contracts, a rational agent should estimate the expected utilities of these contracts and calculate the violation risks related to them. In order to perform such pre-signing procedures, this agent has to be capable of computing a policy taking into account the norms and sanctions in the contracts. In relation to this, the contribution of this work is threefold. First, we present the Normative Markov Decision Process, an extension of the Markov Decision Process for explicitly representing norms. In order to illustrate the usage of our framework, we model an example in a simulated aerospace aftermarket. Second, we specify an algorithm for identifying the states of the process which characterize the violation of norms. Finally, we show how to compute policies with our framework and how to calculate the risk of violating the norms in the contracts by adopting a particular policy.
Resumo:
This paper studies the average control problem of discrete-time Markov Decision Processes (MDPs for short) with general state space, Feller transition probabilities, and possibly non-compact control constraint sets A(x). Two hypotheses are considered: either the cost function c is strictly unbounded or the multifunctions A(r)(x) = {a is an element of A(x) : c(x, a) <= r} are upper-semicontinuous and compact-valued for each real r. For these two cases we provide new results for the existence of a solution to the average-cost optimality equality and inequality using the vanishing discount approach. We also study the convergence of the policy iteration approach under these conditions. It should be pointed out that we do not make any assumptions regarding the convergence and the continuity of the limit function generated by the sequence of relative difference of the alpha-discounted value functions and the Poisson equations as often encountered in the literature. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
This paper studies the asymptotic optimality of discrete-time Markov decision processes (MDPs) with general state space and action space and having weak and strong interactions. By using a similar approach as developed by Liu, Zhang, and Yin [Appl. Math. Optim., 44 (2001), pp. 105-129], the idea in this paper is to consider an MDP with general state and action spaces and to reduce the dimension of the state space by considering an averaged model. This formulation is often described by introducing a small parameter epsilon > 0 in the definition of the transition kernel, leading to a singularly perturbed Markov model with two time scales. Our objective is twofold. First it is shown that the value function of the control problem for the perturbed system converges to the value function of a limit averaged control problem as epsilon goes to zero. In the second part of the paper, it is proved that a feedback control policy for the original control problem defined by using an optimal feedback policy for the limit problem is asymptotically optimal. Our work extends existing results of the literature in the following two directions: the underlying MDP is defined on general state and action spaces and we do not impose strong conditions on the recurrence structure of the MDP such as Doeblin's condition.
Resumo:
We apply diffusion strategies to propose a cooperative reinforcement learning algorithm, in which agents in a network communicate with their neighbors to improve predictions about their environment. The algorithm is suitable to learn off-policy even in large state spaces. We provide a mean-square-error performance analysis under constant step-sizes. The gain of cooperation in the form of more stability and less bias and variance in the prediction error, is illustrated in the context of a classical model. We show that the improvement in performance is especially significant when the behavior policy of the agents is different from the target policy under evaluation.
Resumo:
2010 Mathematics Subject Classification: 60J80.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The two-node tandem Jackson network serves as a convenient reference model for the analysis and testing of different methodologies and techniques in rare event simulation. In this paper we consider a new approach to efficiently estimate the probability that the content of the second buffer exceeds some high level L before it becomes empty, starting from a given state. The approach is based on a Markov additive process representation of the buffer processes, leading to an exponential change of measure to be used in an importance sampling procedure. Unlike changes of measures proposed and studied in recent literature, the one derived here is a function of the content of the first buffer. We prove that when the first buffer is finite, this method yields asymptotically efficient simulation for any set of arrival and service rates. In fact, the relative error is bounded independent of the level L; a new result which is not established for any other known method. When the first buffer is infinite, we propose a natural extension of the exponential change of measure for the finite buffer case. In this case, the relative error is shown to be bounded (independent of L) only when the second server is the bottleneck; a result which is known to hold for some other methods derived through large deviations analysis. When the first server is the bottleneck, experimental results using our method seem to suggest that the relative error is bounded linearly in L.
Resumo:
Cette thèse porte sur les questions d'évaluation et de couverture des options dans un modèle exponentiel-Lévy avec changements de régime. Un tel modèle est construit sur un processus additif markovien un peu comme le modèle de Black- Scholes est basé sur un mouvement Brownien. Du fait de l'existence de plusieurs sources d'aléa, nous sommes en présence d'un marché incomplet et ce fait rend inopérant les développements théoriques initiés par Black et Scholes et Merton dans le cadre d'un marché complet. Nous montrons dans cette thèse que l'utilisation de certains résultats de la théorie des processus additifs markoviens permet d'apporter des solutions aux problèmes d'évaluation et de couverture des options. Notamment, nous arrivons à caracté- riser la mesure martingale qui minimise l'entropie relative à la mesure de probabilit é historique ; aussi nous dérivons explicitement sous certaines conditions, le portefeuille optimal qui permet à un agent de minimiser localement le risque quadratique associé. Par ailleurs, dans une perspective plus pratique nous caract érisons le prix d'une option Européenne comme l'unique solution de viscosité d'un système d'équations intégro-di érentielles non-linéaires. Il s'agit là d'un premier pas pour la construction des schémas numériques pour approcher ledit prix.
Resumo:
In this paper, we present a stochastic model for disability insurance contracts. The model is based on a discrete time non-homogeneous semi-Markov process (DTNHSMP) to which the backward recurrence time process is introduced. This permits a more exhaustive study of disability evolution and a more efficient approach to the duration problem. The use of semi-Markov reward processes facilitates the possibility of deriving equations of the prospective and retrospective mathematical reserves. The model is applied to a sample of contracts drawn at random from a mutual insurance company.
Resumo:
2000 Mathematics Subject Classification: 60J80, 60K05.
Resumo:
A new structure with the special property that instantaneous resurrection and mass disaster are imposed on an ordinary birth-death process is considered. Under the condition that the underlying birth-death process is exit or bilateral, we are able to give easily checked existence criteria for such Markov processes. A very simple uniqueness criterion is also established. All honest processes are explicitly constructed. Ergodicity properties for these processes are investigated. Surprisingly, it can be proved that all the honest processes are not only recurrent but also ergodic without imposing any extra conditions. Equilibrium distributions are then established. Symmetry and reversibility of such processes are also investigated. Several examples are provided to illustrate our results.
Resumo:
This report is a review of additive and subtractive manufacturing techniques. This approach (additive manufacturing) has resided largely in the prototyping realm, where the methods of producing complex freeform solid objects directly from a computer model without part-specific tooling or knowledge. But these technologies are evolving steadily and are beginning to encompass related systems of material addition, subtraction, assembly, and insertion of components made by other processes. Furthermore, these various additive processes are starting to evolve into rapid manufacturing techniques for mass-customized products, away from narrowly defined rapid prototyping. Taking this idea far enough down the line, and several years hence, a radical restructuring of manufacturing could take place. Manufacturing itself would move from a resource base to a knowledge base and from mass production of single use products to mass customized, high value, life cycle products, majority of research and development was focused on advanced development of existing technologies by improving processing performance, materials, modelling and simulation tools, and design tools to enable the transition from prototyping to manufacturing of end use parts.
Resumo:
We consider a spectrally-negative Markov additive process as a model of a risk process in a random environment. Following recent interest in alternative ruin concepts, we assume that ruin occurs when an independent Poissonian observer sees the process as negative, where the observation rate may depend on the state of the environment. Using an approximation argument and spectral theory, we establish an explicit formula for the resulting survival probabilities in this general setting. We also discuss an efficient evaluation of the involved quantities and provide a numerical illustration.
Resumo:
De entre todos os paradigmas de aprendizagem actualmente identificados, a Aprendizagem por Reforço revela-se de especial interesse e aplicabilidade nos inúmeros processos que nos rodeiam: desde a solitária sonda que explora o planeta mais remoto, passando pelo programa especialista que aprende a apoiar a decisão médica pela experiencia adquirida, até ao cão de brincar que faz as delícias da criança interagindo com ela e adaptando-se aos seus gostos, e todo um novo mundo que nos rodeia e apela crescentemente a que façamos mais e melhor nesta área. Desde o aparecimento do conceito de aprendizagem por reforço, diferentes métodos tem sido propostos para a sua concretização, cada um deles abordando aspectos específicos. Duas vertentes distintas, mas complementares entre si, apresentam-se como características chave do processo de aprendizagem por reforço: a obtenção de experiência através da exploração do espaço de estados e o aproveitamento do conhecimento obtido através dessa mesma experiência. Esta dissertação propõe-se seleccionar alguns dos métodos propostos mais promissores de ambas as vertentes de exploração e aproveitamento, efectuar uma implementação de cada um destes sobre uma plataforma modular que permita a simulação do uso de agentes inteligentes e, através da sua aplicação na resolução de diferentes configurações de ambientes padrão, gerar estatísticas funcionais que permitam inferir conclusões que retractem entre outros aspectos a sua eficiência e eficácia comparativas em condições específicas.