957 resultados para Markov, Processos de


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation proposes a bivariate markov switching dynamic conditional correlation model for estimating the optimal hedge ratio between spot and futures contracts. It considers the cointegration between series and allows to capture the leverage efect in return equation. The model is applied using daily data of future and spot prices of Bovespa Index and R$/US$ exchange rate. The results in terms of variance reduction and utility show that the bivariate markov switching model outperforms the strategies based ordinary least squares and error correction models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O presente trabalho busca identificar a ocorrência, duração e probabilidades de transição de diferentes regimes na condução da política monetária no Brasil a partir da implantação do sistema de metas de inflação em 1999. A estimação da função de reação do Banco Central do Brasil é realizada a partir de uma Regra de Taylor forward looking para uma economia aberta, onde utilizamos a metodologia Markov Regime Switching para caracterizar de forma endógena os diferentes regimes de política monetária. Os resultados obtidos indicam a ocorrência de três regimes distintos de política monetária a partir da implantação do sistema de metas de inflação no Brasil. O primeiro regime ocorre durante 21% do período estudado e se caracteriza pela não aderência ao princípio de Taylor e discricionariedade da autoridade monetária, que reage demonstrando maior sensibilidade ao hiato do produto. O segundo regime é o de maior duração, ocorre durante 67% do período estudado, e se caracteriza pela aderência ao princípio de Taylor e equilíbrio nos pesos atribuídos pelo Banco Central tanto ao hiato do produto como ao desvio das expectativas de inflação com relação à meta. Já o terceiro regime ocorre durante 12% do período estudado e se caracteriza não somente pela aderência ao princípio de Taylor, como também por uma maior aversão ao desvio das expectativas de inflação com relação à meta.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"Es tracta d'un projecte dividit en dues parts independents però complementàries, realitzades per autors diferents. Aquest document conté originàriament altre material i/o programari només consultable a la Biblioteca de Ciència i Tecnologia"

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper discusses maintenance challenges of organisations with a huge number of devices and proposes the use of probabilistic models to assist monitoring and maintenance planning. The proposal assumes connectivity of instruments to report relevant features for monitoring. Also, the existence of enough historical registers with diagnosed breakdowns is required to make probabilistic models reliable and useful for predictive maintenance strategies based on them. Regular Markov models based on estimated failure and repair rates are proposed to calculate the availability of the instruments and Dynamic Bayesian Networks are proposed to model cause-effect relationships to trigger predictive maintenance services based on the influence between observed features and previously documented diagnostics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper discusses maintenance challenges of organisations with a huge number of devices and proposes the use of probabilistic models to assist monitoring and maintenance planning. The proposal assumes connectivity of instruments to report relevant features for monitoring. Also, the existence of enough historical registers with diagnosed breakdowns is required to make probabilistic models reliable and useful for predictive maintenance strategies based on them. Regular Markov models based on estimated failure and repair rates are proposed to calculate the availability of the instruments and Dynamic Bayesian Networks are proposed to model cause-effect relationships to trigger predictive maintenance services based on the influence between observed features and previously documented diagnostics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A previsão dos preços do petróleo é fundamental para o planejamento energético e oferece subsídio a tomada de decisões de longo prazo, que envolvem custos irrecuperáveis. No entanto, os preços do petróleo são muito instáveis sujeitos a choques como resultado de questões geopolíticas, poder de mercado da OPEP (Organização dos Países Exportadores de Petróleo) e pressões de demanda resultando numa série sujeita a quebras estruturais, prejudicando a estimação e previsão de modelos de série temporal. Dada a limitação dos modelos de volatilidade da família GARCH, que são instáveis e apresentam elevada persistência em séries com mudanças estruturais, este trabalho compara a previsão da volatilidade, em termos de intervalos de confiança e persistência, dos modelos de volatilidade com mudança de regime markoviana em relação aos modelos de volatilidade determinísticos. Os modelos de volatilidade com mudança de regime considerados são o modelo SWARCH (Markov Switch ARCH) e introduz-se o modelo MSIH (Markov Switch Intercept Heteroskedasticity) para o estudo da volatilidade. Como resultado as previsões de volatilidade dos modelos com mudança de regime permitem uma estimação da volatilidade que reduz substancialmente a persistência em relação aos modelos GARCH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho avalia as previsões de três métodos não lineares — Markov Switching Autoregressive Model, Logistic Smooth Transition Autoregressive Model e Autometrics com Dummy Saturation — para a produção industrial mensal brasileira e testa se elas são mais precisas que aquelas de preditores naive, como o modelo autorregressivo de ordem p e o mecanismo de double differencing. Os resultados mostram que a saturação com dummies de degrau e o Logistic Smooth Transition Autoregressive Model podem ser superiores ao mecanismo de double differencing, mas o modelo linear autoregressivo é mais preciso que todos os outros métodos analisados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes a method to examine variations in the cointegration relation between preferred and common stocks in the Brazilian stock market via Markovian regime switches. It aims on contributing for future works in "pairs trading" and, more specifically, to price discovery, given that, conditional on the state, the system is assumed stationary. This implies there exists a (conditional) moving average representation from which measures of "information share" (IS) could be extracted. For identification purposes, the Markov error correction model is estimated within a Bayesian MCMC framework. Inference and capability of detecting regime changes are shown using a Montecarlo experiment. I also highlight the necessity of modeling financial effects of high frequency data for reliable inference.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matematica Aplicada e Computacional - FCT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biometria - IBB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Civil