994 resultados para Market simulation
Resumo:
Distributed energy resources will provide a significant amount of the electricity generation and will be a normal profitable business. In the new decentralized grid, customers will be among the many decentralized players and may even help to co-produce the required energy services such as demand-side management and load shedding. So, they will gain the opportunity to be more active market players. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. In this paper we propose the improvement of MASCEM, a multi-agent simulation tool to study negotiations in electricity spot markets based on different market mechanisms and behavior strategies, in order to take account of decentralized players such as VPP.
Resumo:
In order to develop a flexible simulator, a variety of models for Ancillary Services (AS) negotiation has been implemented in MASCEM – a multi-agent system competitive electricity markets simulator. In some of these models, the energy and the AS are addressed simultaneously while in other models they are addressed separately. This paper presents an energy and ancillary services joint market simulation. This paper proposes a deterministic approach for solving the energy and ancillary services joint market. A case study based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve, and Non-Spinning Reserve services is used to demonstrate that the use of the developed methodology is suitable for solving this kind of optimization problem. The presented case study is based on CAISO real AS market data considers fifteen bids.
Resumo:
Electricity market players operating in a liberalized environment require adequate decision support tools, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. This paper deals with short-term predication of day-ahead spinning reserve (SR) requirement that helps the ISO to make effective and timely decisions. Based on these forecasted information, market participants can use strategic bidding for day-ahead SR market. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
Resumo:
Power systems operation in a liberalized environment requires that market players have access to adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper deals with ancillary services negotiation in electricity markets. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of ancillary services using two different methods (Linear Programming and Genetic Algorithm approaches) is included in the paper.
Resumo:
Adequate decision support tools are required by electricity market players operating in a liberalized environment, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services (AS) represent a good negotiation opportunity that must be considered by market players. Based on the ancillary services forecasting, market participants can use strategic bidding for day-ahead ancillary services markets. For this reason, ancillary services market simulation is being included in MASCEM, a multi-agent based electricity market simulator that can be used by market players to test and enhance their bidding strategies. The paper presents the methodology used to undertake ancillary services forecasting, based on an Artificial Neural Network (ANN) approach. ANNs are used to day-ahead prediction of non-spinning reserve (NS), regulation-up (RU), and regulation down (RD). Spinning reserve (SR) is mentioned as past work for comparative analysis. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
Resumo:
This study aims to replicate Apple’s stock market movement by modeling major investment profiles and investors. The present model recreates a live exchange to forecast any predictability in stock price variation, knowing how investors act when it concerns investment decisions. This methodology is particularly relevant if, just by observing historical prices and knowing the tendencies in other players’ behavior, risk-adjusted profits can be made. Empirical research made in the academia shows that abnormal returns are hardly consistent without a clear idea of who is in the market in a given moment and the correspondent market shares. Therefore, even when knowing investors’ individual investment profiles, it is not clear how they affect aggregate markets.
Resumo:
Typical Double Auction (DA) models assume that trading agents are one-way traders. With this limitation, they cannot directly reflect the fact individual traders in financial markets (the most popular application of double auction) choose their trading directions dynamically. To address this issue, we introduce the Bi-directional Double Auction (BDA) market which is populated by two-way traders. Based on experiments under both static and dynamic settings, we find that the allocative efficiency of a static continuous BDA market comes from rational selection of trading directions and is negatively related to the intelligence of trading strategies. Moreover, we introduce Kernel trading strategy designed based on probability density estimation for general DA market. Our experiments show it outperforms some intelligent DA market trading strategies. Copyright © 2013, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tool must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case based on California Independent System Operator (CAISO) data concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
The electricity market restructuring, and its worldwide evolution into regional and even continental scales, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in a rising complexity in power systems operation. Several power system simulators have been developed in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex and constantly changing environment. The main contribution of this paper is given by the integration of several electricity market and power system models, respecting to the reality of different countries. This integration is done through the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The continuous development of Multi-Agent System for Competitive Electricity Markets platform provides the means for the exemplification of the usefulness of this ontology. A case study using the proposed multi-agent platform is presented, considering a scenario based on real data that simulates the European Electricity Market environment, and comparing its performance using different market mechanisms. The main goal is to demonstrate the advantages that the integration of various market models and simulation platforms have for the study of the electricity markets’ evolution.
Resumo:
Electricity Markets are not only a new reality but an evolving one as the involved players and rules change at a relatively high rate. Multi-agent simulation combined with Artificial Intelligence techniques may result in sophisticated tools very helpful under this context. Some simulation tools have already been developed, some of them very interesting. However, at the present state it is important to go a step forward in Electricity Markets simulators as this is crucial for facing changes in Power Systems. This paper explains the context and needs of electricity market simulation, describing the most important characteristics of available simulators. We present our work concerning MASCEM simulator, presenting its features as well as the improvements being made to accomplish the change and challenging reality of Electricity Markets.
Resumo:
Price forecast is a matter of concern for all participants in electricity markets, from suppliers to consumers through policy makers, which are interested in the accurate forecast of day-ahead electricity prices either for better decisions making or for an improved evaluation of the effectiveness of market rules and structure. This paper describes a methodology to forecast market prices in an electricity market using an ARIMA model applied to the conjectural variations of the firms acting in an electricity market. This methodology is applied to the Iberian electricity market to forecast market prices in the 24 hours of a working day. The methodology was then compared with two other methodologies, one called naive and the other a direct forecast of market prices using also an ARIMA model. Results show that the conjectural variations price forecast performs better than the naive and that it performs slightly better than the direct price forecast.
Resumo:
A long-term planning method for the electricity market is to simulate market operation into the future. Outputs from market simulation include indicators for transmission augmentation and new generation investment. A key input to market simulations is demand forecasts. For market simulation purposes, regional demand forecasts for each half-hour interval of the forecasting horizon are required, and they must accurately represent realistic demand profiles and interregional demand relationships. In this paper, a demand model is developed to accurately model these relationships. The effects of uncertainty in weather patterns and inherent correlations between regional demands on market simulation results are presented. This work signifies the advantages of probabilistic modeling of demand levels when making market-based planning decisions.
Resumo:
Two stock-market simulation experiments investigated the notion that rumors that invoke stable-cause attributions spawn illusory associations and less regressive predictions and behavior. In Study 1, illusory perceptions of association and stable causation (rumors caused price changes on the day after they appeared) existed despite rigorous conditions of nonassociation (price changes were unrelated to rumors). Predictions (recent price trends will continue) and trading behavior (departures from a strong buy-low-sell-high strategy) were both anti-regressive. In Study 2, stability of attribution was manipulated via a computerized tutorial. Participants taught to view price-changes as caused by stable forces predicted less regressively and departed more from buy-low-sell-high trading patterns than those taught to perceive changes as caused by unstable forces. Results inform a social cognitive and decision theoretic understanding of rumor by integrating it with causal attribution, covariation detection, and prediction theory. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.