818 resultados para Marine toxins


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sociedade Polis Litoral Ria Formosa,Projects Quasus and Project Toxigest financed by PROMAR (2007-2013)

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development, validation, comparison and evaluation of analytical methods for marine toxins rely on the availability of toxic material. Within the project JACUMAR PSP, our interest is mainly focused on autochthonous bivalve species with the toxic profile of Alexandrium minutum, since this is the principal species involved regionally in PSP outbreaks. Mussels and oysters were exposed during few days in the harbor of Vilanova i la Geltrú, to blooms reaching a maximum A. minutum concentration of 200,000 cells L-1 in 2008, and 40,000 and 800,000 cells L-1, in 2009. Mussels, oysters and clams were exposed to one bloom of 22,000 cells L-1 in the harbor of Cambrils in 2009. In all situations higher toxic levels analyzed by HPLC-FD with postcolumn oxidation were observed in mussels (i.e. 1,200-2,500 μg eq. STX kg-1) than in oysters (i.e. 60-800 μg eq. STX kg-1) exposed to the same bloom. Blooms with higher concentrations of A. minutum did not correspond to higher levels of PSP toxins in bivalves. These differences may be explained by differences in A. minutum population dynamics, toxin production or in the physiological state or behaviour of shellfish. These results confirm that mussels concentrate more PSP toxins from A. minutum than oysters and clams.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Measurement of marine algal toxins has traditionally focussed on shellfish monitoring while, over the last decade, passive sampling has been introduced as a complementary tool for exploratory studies. Since 2011, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been adopted as the EU reference method (No.15/2011) for detection and quantitation of lipophilic toxins. Traditional LC-MS approaches have been based on low-resolution mass spectrometry (LRMS), however, advances in instrument platforms have led to a heightened interest in the use of high-resolution mass spectrometry (HRMS) for toxin detection. This work describes the use of HRMS in combination with passive sampling as a progressive approach to marine algal toxin surveys. Experiments focused on comparison of LRMS and HRMS for determination of a broad range of toxins in shellfish and passive samplers. Matrix effects are an important issue to address in LC-MS; therefore, this phenomenon was evaluated for mussels (Mytilus galloprovincialis) and passive samplers using LRMS (triple quadrupole) and HRMS (quadrupole time-of-flight and Orbitrap) instruments. Matrix-matched calibration solutions containing okadaic acid and dinophysistoxins, pectenotoxin, azaspiracids, yessotoxins, domoic acid, pinnatoxins, gymnodimine A and 13-desmethyl spirolide C were prepared. Similar matrix effects were observed on all instruments types. Most notably, there was ion enhancement for pectenotoxins, okadaic acid/dinophysistoxins on one hand, and ion suppression for yessotoxins on the other. Interestingly, the ion selected for quantitation of PTX2 also influenced the magnitude of matrix effects, with the sodium adduct typically exhibiting less susceptibility to matrix effects than the ammonium adduct. As expected, mussel as a biological matrix, quantitatively produced significantly more matrix effects than passive sampler extracts, irrespective of toxin. Sample dilution was demonstrated as an effective measure to reduce matrix effects for all compounds, and was found to be particularly useful for the non-targeted approach. Limits of detection and method accuracy were comparable between the systems tested, demonstrating the applicability of HRMS as an effective tool for screening and quantitative analysis. HRMS offers the advantage of untargeted analysis, meaning that datasets can be retrospectively analysed. HRMS (full scan) chromatograms of passive samplers yielded significantly less complex data sets than mussels, and were thus more easily screened for unknowns. Consequently, we recommend the use of HRMS in combination with passive sampling for studies investigating emerging or hitherto uncharacterised toxins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Publicado en la página web de la Consejería de Salud y Bienestar Social: www.juntadeandalucia.es/salud (Consejería de Salud y Bienestar Social / Ciudadanía / Nuestra Salud / Medio ambiente y Salud / Zonas de baño)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents the functional characterisation of a protein phosphatase 2A (PP2A) catalytic subunit obtained by genetic engineering and its conjugation to magnetic particles (MPs) via metal coordination chemistry for the subsequent development of assays for diarrheic lipophilic marine toxins. Colorimetric assays with free enzyme have allowed the determination of the best enzyme activity stabiliser, which is glycerol at 10%. They have also demonstrated that the recombinant enzyme can be as sensitive towards okadaic acid (OA) (LOD=2.3μg/L) and dinophysistoxin-1 (DTX-1) (LOD=15.2μg/L) as a commercial PP2A and, moreover, it has a higher operational stability, which makes possible to perform the protein phosphatase inhibition assay (PPIA) with a lower enzyme amount. Once conjugated to MPs, the PP2A catalytic subunit still retains its enzyme activity and it can also be inhibited by OA (LOD=30.1μg/L).

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lyngbya majuscula is a benthic filamentous marine cyanobacterium, which in recent years appears to have been increasing in frequency and size of blooms in Moreton Bay, Queensland. It has a worldwide distribution throughout the tropics and subtropics in water to 30m. It has been found to contain a variety of chemicals that exert a range of biological effects, including skin, eye and respiratory irritation. The toxins lyngbyatoxin A and debromoaplysiatoxin appear to give the most widely witnessed biological effects in relation to humans, and experiments involving these two toxins show the formation of acute dermal lesions. Studies into the epidemiology of the dermatitic, respiratory and eye effects of the toxins of this organism are reviewed and show that Lyngbya induced dermatitis has occurred in a number of locations. The effects of aerosolised Lyngbya in relation to health outcomes were also reported. Differential effects of bathing behaviour after Lyngbya exposure were examined in relation to the severity of health outcomes. The potential for Lyngbya to exhibit differential toxicologies due to the presence of varying proportions of a range of toxins is also examined. This paper reviews the present state of knowledge on the effects of Lyngbya majuscula on human health, ecosystems and human populations during a toxic cyanobacterial bloom. The potential exists for toxins from Lyngbya majuscula affecting ecological health and in particular marine reptiles. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cystine knot structural motif is present in peptides and proteins from a variety of species, including fungi, plants, marine molluscs. insects and spiders. It comprises an embedded ring formed by two disulfide bonds and their connecting backbone segments which is threaded by a third disulfide bond. It is invariably associated with nearby beta-sheet structure and appears to be a highly efficient motif for structure stabilization. Because of this stability it makes an ideal framework for molecular engineering applications. In this review we summarize the main structural features of the cystine knot motif, focussing on toxin molecules containing either the inhibitor cystine knot or the cyclic cystine knot. Peptides containing these motifs are 26-48 residues long and include ion channel blockers, haemolytic agents, as well as molecules having antiviral and antibacterial activities. The stability of peptide toxins containing the cystine knot motif, their range of bioactivities and their unique structural scaffold can be harnessed for molecular engineering applications and in drug design. Applications of cystine knot molecules for the treatment of pain. and their potential use in antiviral and antibacterial applications are described. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trace organic chemicals include a range of compounds which, due to a combination of their physico-chemical properties and toxicological implications, have been described as a serious threat to the biotic environment. A global treaty to regulate the manufacture and release of some of the most persistent trace chemicals has been promulgated and signed. The marine environment is an important sink for many trace chemicals, some of which accumulate in the marine food chain and in particular in marine mammals. With respect to the global distribution of trace organic chemicals, the levels of organohalogen compounds in the Southern Hemisphere are comparatively lower for a given environmental compartment and latitude compared to the Northern Hemisphere. A debate is currently evolving about the toxicity of alternative halogen substitutions such as bromine instead of chlorine and also of mixed halogen substitution. Recently a series of potentially natural bioaccumulative and persistent organohalogen chemicals have been found in marine mammals and turtles at levels in excess of those of anthropogenic trace organochlorines including PCBs and DDE. Little is known about the sources, behaviour and effects of natural trace organic chemicals. This manuscript presents an overview on the occurrence of trace organic chemicals in different compartments of the aquatic environment. Important knowledge gaps with regards to trace chemicals in the marine environment are presented. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toxic (Gobiodon spp.) and non-toxic (Paragobiodon xanthosomus) gobies became infected with external parasites (gnathiid isopods) at equal rates in a laboratory experiment. Parasites were evenly distributed over the body of P. xanthosomus but were mostly confined to the fins of Gobiodon spp., where toxin glands are less abundant. Skin toxins were not associated with the rate of infection but their distribution did appear to influence the site of parasite attachment. (C) 2003 The Fisheries Society of the British Isles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eight marine cyanobacteria strains of the genera Cyanobium, Leptolyngbya, Oscillatoria, Phormidium, and Synechococcus were isolated from rocky beaches along the Atlantic Portuguese central coast and tested for ecotoxicity. Strains were identified by morphological characteristics and by the amplification and sequentiation of the 16S rDNA. Bioactivity of dichloromethane, methanol and aqueous extracts was assessed by the Artemia salina bioassay. Peptide toxin production was screened by matrix assisted laser desorption/ionization time of flight mass spectrometry. Molecular analysis of the genes involved in the production of known cyanotoxins such as microcystins, nodularins and cylindrospermopsin was also performed. Strains were toxic to the brine shrimp A. salina nauplii with aqueous extracts being more toxic than the organic ones. Although mass spectrometry analysis did not reveal the production of microcystins or other known toxic peptides, a positive result for the presence of mcyE gene was found in one Leptolyngbya strain and one Oscillatoria strain. The extensive brine shrimp mortality points to the involvement of other unknown toxins, and the presence of a fragment of genes involved in the cyanotoxin production highlight the potential risk of cyanobacteria occurrence on the Atlantic coast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed a comprehensive study to assess the fit for purpose of four chromatographic conditions for the determination of six groups of marine lipophilic toxins (okadaic acid and dinophysistoxins, pectenotoxins, azaspiracids, yessotoxins, gymnodimine and spirolides) by LC-MS/MS to select the most suitable conditions as stated by the European Union Reference Laboratory for Marine Biotoxins (EURLMB). For every case, the elution gradient has been optimized to achieve a total run-time cycle of 12 min. We performed a single-laboratory validation for the analysis of three relevant matrices for the seafood aquaculture industry (mussels, pacific oysters and clams), and for sea urchins for which no data about lipophilic toxins have been reported before. Moreover, we have compared the method performance under alkaline conditions using two quantification strategies: the external standard calibration (EXS) and the matrix-matched standard calibration (MMS). Alkaline conditions were the only scenario that allowed detection windows with polarity switching in a 3200 QTrap mass spectrometer, thus the analysis of all toxins can be accomplished in a single run, increasing sample throughput. The limits of quantification under alkaline conditions met the validation requirements established by the EURLMB for all toxins and matrices, while the remaining conditions failed in some cases. The accuracy of the method and the matrix effects where generally dependent on the mobile phases and the seafood species. The MMS had a moderate positive impact on method accuracy for crude extracts, but it showed poor trueness for seafood species other than mussels when analyzing hydrolyzed extracts. Alkaline conditions with EXS and recovery correction for OA were selected as the most proper conditions in the context of our laboratory. This comparative study can help other laboratories to choose the best conditions for the implementation of LC-MS/MS according to their own necessities.