850 resultados para Marginal Costs
Resumo:
Objective: To estimate the relative inpatient costs of hospital-acquired conditions. Methods: Patient level costs were estimated using computerized costing systems that log individual utilization of inpatient services and apply sophisticated cost estimates from the hospital's general ledger. Occurrence of hospital-acquired conditions was identified using an Australian ‘condition-onset' flag for diagnoses not present on admission. These were grouped to yield a comprehensive set of 144 categories of hospital-acquired conditions to summarize data coded with ICD-10. Standard linear regression techniques were used to identify the independent contribution of hospital-acquired conditions to costs, taking into account the case-mix of a sample of acute inpatients (n = 1,699,997) treated in Australian public hospitals in Victoria (2005/06) and Queensland (2006/07). Results: The most costly types of complications were post-procedure endocrine/metabolic disorders, adding AU$21,827 to the cost of an episode, followed by MRSA (AU$19,881) and enterocolitis due to Clostridium difficile (AU$19,743). Aggregate costs to the system, however, were highest for septicaemia (AU$41.4 million), complications of cardiac and vascular implants other than septicaemia (AU$28.7 million), acute lower respiratory infections, including influenza and pneumonia (AU$27.8 million) and UTI (AU$24.7 million). Hospital-acquired complications are estimated to add 17.3% to treatment costs in this sample. Conclusions: Patient safety efforts frequently focus on dramatic but rare complications with very serious patient harm. Previous studies of the costs of adverse events have provided information on ‘indicators’ of safety problems rather than the full range of hospital-acquired conditions. Adding a cost dimension to priority-setting could result in changes to the focus of patient safety programmes and research. Financial information should be combined with information on patient outcomes to allow for cost-utility evaluation of future interventions.
Resumo:
The effectiveness of vaccinating males against the human papillomavirus (HPV) remains a controversial subject. Many existing studies conclude that increasing female coverage is more effective than diverting resources into male vaccination. Recently, several empirical studies on HPV immunization have been published, providing evidence of the fact that marginal vaccination costs increase with coverage. In this study, we use a stochastic agent-based modeling framework to revisit the male vaccination debate in light of these new findings. Within this framework, we assess the impact of coverage-dependent marginal costs of vaccine distribution on optimal immunization strategies against HPV. Focusing on the two scenarios of ongoing and new vaccination programs, we analyze different resource allocation policies and their effects on overall disease burden. Our results suggest that if the costs associated with vaccinating males are relatively close to those associated with vaccinating females, then coverage-dependent, increasing marginal costs may favor vaccination strategies that entail immunization of both genders. In particular, this study emphasizes the necessity for further empirical research on the nature of coverage-dependent vaccination costs.
Resumo:
In the last few years, the European Union (EU) has become greatly concerned about the environmental costs of road transport in Europe as a result of the constant growth in the market share of trucks and the steady decline in the market share of railroads. In order to reverse this trend, the EU is promoting the implementation of additional charges for heavy goods vehicles (HGV) on the trunk roads of the EU countries. However, the EU policy is being criticised because it does not address the implementation of charges to internalise the external costs produced by automobiles and other transport modes such as railroad. In this paper, we first describe the evolution of the HGV charging policy in the EU, and then assess its practical implementation across different European countries. Second, and of greater significance, by using the case study of Spain, we evaluate to what extent the current fees on trucks and trains reflect their social marginal costs, and consequently lead to an allocative-efficient outcome. We found that for the average case in Spain the truck industry meets more of the marginal social cost produced by it than does the freight railroad industry. The reason for this lies in the large sums of money paid by truck companies in fuel taxes, and the subsidies that continue to be granted by the government to the railroads.
Resumo:
In the last few years, the European Union (EU) has become greatly concerned about the environmental costs of road transport in Europe as a result of the constant growth in the market share of trucks and the steady decline in the market share of railroads. In order to reverse this trend, the EU is promoting the implementation of additional charges for heavy goods vehicles (HGV) on the trunk roads of the EU countries. However, the EU policy is being criticised because it does not address the implementation of charges to internalise the external costs produced by automobiles and other transport modes such as railroad. In this paper, we first describe the evolution of the HGV charging policy in the EU, and then assess its practical implementation across different European countries. Second, and of greater significance, by using the case study of Spain, we evaluate to what extent the current fees on trucks and trains reflect their social marginal costs, and consequently lead to an allocative-efficient outcome. We found that for the average case in Spain the truck industry meets more of the marginal social cost produced by it than does the freight railroad industry. The reason for this lies in the large sums of money paid by truck companies in fuel taxes, and the subsidies that continue to be granted by the government to the railroads.
Resumo:
Traditional sensitivity and elasticity analyses of matrix population models have been used to inform management decisions, but they ignore the economic costs of manipulating vital rates. For example, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously. These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency. ©2006 Society for Conservation Biology.
Resumo:
Traditional sensitivity and elasticity analyses of matrix population models have been used to p inform management decisions, but they ignore the economic costs of manipulating vital rates. For exam le, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously, These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency.
Resumo:
Coal-fired power plants may enjoy a significant advantage relative to gas plants in terms of cheaper fuel cost. Still, this advantage may erode or even turn into disadvantage depending on CO2 emission allowance price. This price will presumably rise in both the Kyoto Protocol commitment period (2008-2012) and the first post-Kyoto years. Thus, in a carbon-constrained environment, coal plants face financial risks arising in their profit margins, which in turn hinge on their so-called "clean dark spread". These risks are further reinforced when the price of the output electricity is determined by natural gas-fired plants' marginal costs, which differ from coal plants' costs. We aim to assess the risks in coal plants' margins. We adopt parameter values estimated from empirical data. These in turn are derived from natural gas and electricity markets alongside the EU ETS market where emission allowances are traded. Monte Carlo simulation allows to compute the expected value and risk profile of coal-based electricity generation. We focus on the clean dark spread in both time periods under different future scenarios in the allowance market. Specifically, bottom 5% and 10% percentiles are derived. According to our results, certain future paths of the allowance price may impose significant risks on the clean dark spread obtained by coal plants.
Resumo:
Seminal work by Weitzman (1974) revealed prices are preferred to quantities when marginal benefits are relatively flat compared to marginal costs. We extend this comparison to indexed policies, where quantities are proportional to an index, such as output. We find that policy preferences hinge on additional parameters describing the first and second moments of the index and the ex post optimal quantity level. When the ratio of these variables' coefficients of variation divided by their correlation is less than approximately two, indexed quantities are preferred to fixed quantities. A slightly more complex condition determines when indexed quantities are preferred to prices. Applied to climate change policy, we find that the range of variation and correlation in country-level carbon dioxide emissions and GDP suggests the ranking of an emissions intensity cap (indexed to GDP) compared to a fixed emission cap is not uniform across countries; neither policy clearly dominates the other.
Resumo:
To maintain a strict balance between demand and supply in the US power systems, the Independent System Operators (ISOs) schedule power plants and determine electricity prices using a market clearing model. This model determines for each time period and power plant, the times of startup, shutdown, the amount of power production, and the provisioning of spinning and non-spinning power generation reserves, etc. Such a deterministic optimization model takes as input the characteristics of all the generating units such as their power generation installed capacity, ramp rates, minimum up and down time requirements, and marginal costs for production, as well as the forecast of intermittent energy such as wind and solar, along with the minimum reserve requirement of the whole system. This reserve requirement is determined based on the likelihood of outages on the supply side and on the levels of error forecasts in demand and intermittent generation. With increased installed capacity of intermittent renewable energy, determining the appropriate level of reserve requirements has become harder. Stochastic market clearing models have been proposed as an alternative to deterministic market clearing models. Rather than using a fixed reserve targets as an input, stochastic market clearing models take different scenarios of wind power into consideration and determine reserves schedule as output. Using a scaled version of the power generation system of PJM, a regional transmission organization (RTO) that coordinates the movement of wholesale electricity in all or parts of 13 states and the District of Columbia, and wind scenarios generated from BPA (Bonneville Power Administration) data, this paper explores a comparison of the performance between a stochastic and deterministic model in market clearing. The two models are compared in their ability to contribute to the affordability, reliability and sustainability of the electricity system, measured in terms of total operational costs, load shedding and air emissions. The process of building the models and running for tests indicate that a fair comparison is difficult to obtain due to the multi-dimensional performance metrics considered here, and the difficulty in setting up the parameters of the models in a way that does not advantage or disadvantage one modeling framework. Along these lines, this study explores the effect that model assumptions such as reserve requirements, value of lost load (VOLL) and wind spillage costs have on the comparison of the performance of stochastic vs deterministic market clearing models.
Resumo:
Quantity-based regulation with banking allows regulated firms to shift obligations across time in response to periods of unexpectedly high or low marginal costs. Despite its wide prevalence in existing and proposed emission trading programs, banking has received limited attention in past welfare analyses of policy choice under uncertainty. We address this gap with a model of banking behavior that captures two key constraints: uncertainty about the future from the firm's perspective and a limit on negative bank values (e.g. borrowing). We show conditions where banking provisions reduce price volatility and lower expected costs compared to quantity policies without banking. For plausible parameter values related to U.S. climate change policy, we find that bankable quantities produce behavior quite similar to price policies for about two decades and, during this period, improve welfare by about a $1 billion per year over fixed quantities. © 2012 Elsevier B.V.
Resumo:
The main sources of financing for small and medium sized enterprises (SMEs) are equity (internally generated cash), trade credit paid on time, long and short term bank credits, delayed payment on trade credit and other debt. The marginal costs of each financing instrument are driven by asymmetric information (cost of gathering and analysing information) and transactions costs associated with non-payment (costs of collecting and selling collateral). According to the Pecking Order Theory, firms will choose the cheapest source in terms of cost. In the case of the static trade-off theory, firms choose finance so that the marginal costs across financing sources are all equal, thus an additional Euro of financing is obtained from all the sources whereas under the Pecking Order Theory the source is determined by how far down the Pecking Order the firm is presently located. In this paper, we argue that both of these theories miss the point that the marginal costs are dependent of the use of the funds, and the asset side of the balance sheet primarily determines the financing source for an additional Euro. An empirical analysis on a unique dataset of Portuguese SME's confirms that the composition of the asset side of the balance sheet has an impact of the type of financing used and the Pecking Order Theory and the traditional Static Trade-off theory are rejected.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
In this paper, we consider a mixed market in which a state-owned welfare-maximizing public (domestic) firm competes against a profit-maximizing private (foreign) firm. We suppose that the domestic firm is less eflScient than the foreign firm. However, the domestic firm can lower its marginal costs by conducting cost-reducing R&D investment. We examine the impacts of entry of a foreign firm on decisions upon cost-reducing R&D investment by the domestic firm and how these affect the domestic welfare.
Resumo:
We investigate the effects of trade with a foreign firm and privatization of the domestic pubUc firm on an incentive for the domestic firm to reduce costs by undertaking R&D investment, under demand uncertainty. We suppose that the domestic firm is less efficient than the foreign firm. However, the domestic firm can lower its marginal costs by conducting cost-reducing R&D investment. We examine the impacts of entry of a foreign firm, and the effects of demand uncertainty, on decisions upon cost-reducing R&D investment by the domestic firm and how these affect the domestic welfare.
Resumo:
Dissertação apresentada ao Instituto Politécnico do Porto, Instituto Superior de Contabilidade e Administração do Porto, para obtenção do Grau de Mestre em Empreendedorismo e Internacionalização Orientador: Doutor Orlando Manuel Martins Marques de Lima Rua Coorientadora: Mestre Anabela Paula Alferes Ferreira Ribeiro