946 resultados para Mara River basin
Resumo:
The Mara River in East Africa is currently experiencing poor water quality and increased fluctuations in seasonal flow. This study investigated technically effective and economically viable Best Management Practices for adoption in the Mara River Basin of Kenya that can stop further water resources degradation. A survey of 155 farmers was conducted in the upper catchment of the Kenyan side of the river basin. Farmers provided their assessment of BMPs that would best suit their farm in terms of water quality improvement, economic feasibility, and technicalsuitability. Cost data on different practices from farmers and published literature was collected. The results indicated that erosion control structures and runoff management practices were most suitable for adoption. The study estimated the total area that would be improved to restore water quality and reduce further water resources degradation. Farmers were found to incur losses from adopting new practices and would therefore require monetary support.
Resumo:
Mara is a transboundary river located in Kenya and Tanzania and considered to be an important life line to the inhabitants of the Mara-Serengeti ecosystem. It is also a source of water for domestic water supply, irrigation, livestock and wildlife. The alarming increase of water demand as well as the decline in the river flow in recent years has been a major challenge for water resource managers and stakeholders. This has necessitated the knowledge of the available water resources in the basin at different times of the year. Historical rainfall, minimum and maximum stream flows were analyzed. Inter and intra-annual variability of trends in streamflow are discussed. Landsat imagery was utilized in order to analyze the land use land cover in the upper Mara River basin. The semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT) was used to model the basin water balance and understand the hydrologic effect of the recent land use changes from forest-to-agriculture. The results of this study provided the potential hydrological impacts of three land use change scenarios in the upper Mara River basin. It also adds to the existing literature and knowledge base with a view of promoting better land use management practices in the basin.
Resumo:
Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.
Resumo:
The Mara River Basin (MRB) is endowed with pristine biodiversity, socio-cultural heritage and natural resources. The purpose of my study is to develop and apply an integrated water resource allocation framework for the MRB based on the hydrological processes, water demand and economic factors. The basin was partitioned into twelve sub-basins and the rainfall runoff processes was modeled using the Soil and Water Assessment Tool (SWAT) after satisfactory Nash-Sutcliff efficiency of 0.68 for calibration and 0.43 for validation at Mara Mines station. The impact and uncertainty of climate change on the hydrology of the MRB was assessed using SWAT and three scenarios of statistically downscaled outputs from twenty Global Circulation Models. Results predicted the wet season getting more wet and the dry season getting drier, with a general increasing trend of annual rainfall through 2050. Three blocks of water demand (environmental, normal and flood) were estimated from consumptive water use by human, wildlife, livestock, tourism, irrigation and industry. Water demand projections suggest human consumption is expected to surpass irrigation as the highest water demand sector by 2030. Monthly volume of water was estimated in three blocks of current minimum reliability, reserve (>95%), normal (80–95%) and flood (40%) for more than 5 months in a year. The assessment of water price and marginal productivity showed that current water use hardly responds to a change in price or productivity of water. Finally, a water allocation model was developed and applied to investigate the optimum monthly allocation among sectors and sub-basins by maximizing the use value and hydrological reliability of water. Model results demonstrated that the status on reserve and normal volumes can be improved to ‘low’ or ‘moderate’ by updating the existing reliability to meet prevailing demand. Flow volumes and rates for four scenarios of reliability were presented. Results showed that the water allocation framework can be used as comprehensive tool in the management of MRB, and possibly be extended similar watersheds.
Resumo:
With the flow of the Mara River becoming increasingly erratic especially in the upper reaches, attention has been directed to land use change as the major cause of this problem. The semi-distributed hydrological model Soil and Water Assessment Tool 5 (SWAT) and Landsat imagery were utilized in the upper Mara River Basin in order to 1) map existing field scale land use practices in order to determine their impact 2) determine the impacts of land use change on water flux; and 3) determine the impacts of rainfall (0%, ±10% and ±20%) and air temperature variations (0% and +5%) based on the Intergovernmental Panel on Climate Change projections on the water flux of the 10 upper Mara River. This study found that the different scenarios impacted on the water balance components differently. Land use changes resulted in a slightly more erratic discharge while rainfall and air temperature changes had a more predictable impact on the discharge and water balance components. These findings demonstrate that the model results 15 show the flow was more sensitive to the rainfall changes than land use changes. It was also shown that land use changes can reduce dry season flow which is the most important problem in the basin. The model shows also deforestation in the Mau Forest increased the peak flows which can also lead to high sediment loading in the Mara River. The effect of the land use and climate change scenarios on the sediment and 20 water quality of the river needs a thorough understanding of the sediment transport processes in addition to observed sediment and water quality data for validation of modeling results.
Resumo:
The Ebro River Basin, with around 85 000 km2 and located in NE Spain, is characterized by the high spatial heterogeneity of its geology, topography, climatology and land use. Rainfall is one of the most important climatic variables studied owing to its non-homogenous behaviour in event and intensity, which creates drought, water runoff and soil erosion with negative environmental and social consequences. In this work we characterized the rainfall variability pattern in the Ebro River Basin using universal multifractal (UM) analysis, which estimates the concentration of the data around the precipitation average (C1, codimension average), the degree of multiscaling behaviour in time (? index) and the maximum probable singularity in the rainfall distribution ( s). A spatial and temporal analysis of the UM parameters is applied to study the possible changes. With this porpoise, 60 daily rainfall series were selected from 132 synthetic series generated by Luna and Balairón (AEMet). These daily rainfall series present a length of 60 years, from 1950 to 2009. Each one of them was subdivided (1950?1970 and 1980?2009) to analyse the difference between the two periods. The range of variation of precipitation amounts and the frequency of dry events between both periods are discussed, as well as the evolution of the UM parameters through the years.
Resumo:
Lately, several researchers have pointed out that climate change is expected to increase temperatures and lower rainfall in Mediterranean regions, simultaneously increasing the intensity of extreme rainfall events. These changes could have consequences regarding rainfall regime, erosion, sediment transport and water quality, soil management, and new designs in diversion ditches. Climate change is expected to result in increasingly unpredictable and variable rainfall, in amount and timing, changing seasonal patterns and increasing the frequency of extreme weather events. Consequently, the evolution of frequency and intensity of drought periods is of most important as in agro-ecosystems many processes will be affected by them. Realising the complex and important consequences of an increasing frequency of extreme droughts at the Ebro River basin, our aim is to study the evolution of drought events at this site statistically, with emphasis on the occurrence and intensity of them. For this purpose, fourteen meteorological stations were selected based on the length of the rainfall series and the climatic classification to obtain a representative untreated dataset from the river basin. Daily rainfall series from 1957 to 2002 were obtained from each meteorological station and no-rain period frequency as the consecutive numbers of days were extracted. Based on this data, we study changes in the probability distribution in several sub-periods. Moreover we used the Standardized Precipitation Index (SPI) for identification of drought events in a year scale and then we use this index to fit log-linear models to the contingency tables between the SPI index and the sub-periods, this adjusted is carried out with the help of ANOVA inference.
Resumo:
The purpose of this work is to provide a description of the heavy rainfall phenomenon on statistical tools from a Spanish region. We want to quantify the effect of the climate change to verify the rapidity of its evolution across the variation of the probability distributions. Our conclusions have special interest for the agrarian insurances, which may make estimates of costs more realistically. In this work, the analysis mainly focuses on: The distribution of consecutive days without rain for each gauge stations and season. We estimate density Kernel functions and Generalized Pareto Distribution (GPD) for a network of station from the Ebro River basin until a threshold value u. We can establish a relation between distributional parameters and regional characteristics. Moreover we analyze especially the tail of the probability distribution. These tails are governed by law of power means that the number of events n can be expressed as the power of another quantity x : n(x) = x? . ? can be estimated as the slope of log-log plot the number of events and the size. The most convenient way to analyze n(x) is using the empirical probability distribution. Pr(X mayor que x) ? x-?. The distribution of rainfall over percentile of order 0.95 from wet days at the seasonal scale and in a yearly scale with the same treatment of tails than in the previous section.
Resumo:
Increasingly erratic flow in the upper reaches of the Mara River, has directed attention to land use change as the major cause of this problem. The semi-distributed hydrological model SWAT and Landsat imagery were utilized in order to 1) map existing land use practices, 2) determine the impacts of land use change on water flux; and 3) determine the impacts of climate change scenarios on the water flux of the upper Mara River. This study found that land use change scenarios resulted in more erratic discharge while climate change scenarios had a more predictable impact on the discharge and water balance components. The model results showed the flow was more sensitive to the rainfall changes than land use changes but land use changes reduce dry season flows which is a major problem in the basin. Deforestation increased the peak flows which translated to increased sediment loading in the Mara River.
Resumo:
Floods are among the most devastating events that affect primarily tropical, archipelagic countries such as the Philippines. With the current predictions of climate change set to include rising sea levels, intensification of typhoon strength and a general increase in the mean annual precipitation throughout the Philippines, it has become paramount to prepare for the future so that the increased risk of floods on the country does not translate into more economic and human loss. Field work and data gathering was done within the framework of an internship at the former German Technical Cooperation (GTZ) in cooperation with the Local Government Unit of Ormoc City, Leyte, The Philippines, in order to develop a dynamic computer based flood model for the basin of the Pagsangaan River. To this end, different geo-spatial analysis tools such as PCRaster and ArcGIS, hydrological analysis packages and basic engineering techniques were assessed and implemented. The aim was to develop a dynamic flood model and use the development process to determine the required data, availability and impact on the results as case study for flood early warning systems in the Philippines. The hope is that such projects can help to reduce flood risk by including the results of worst case scenario analyses and current climate change predictions into city planning for municipal development, monitoring strategies and early warning systems. The project was developed using a 1D-2D coupled model in SOBEK (Deltares Hydrological modelling software package) and was also used as a case study to analyze and understand the influence of different factors such as land use, schematization, time step size and tidal variation on the flood characteristics. Several sources of relevant satellite data were compared, such as Digital Elevation Models (DEMs) from ASTER and SRTM data, as well as satellite rainfall data from the GIOVANNI server (NASA) and field gauge data. Different methods were used in the attempt to partially calibrate and validate the model to finally simulate and study two Climate Change scenarios based on scenario A1B predictions. It was observed that large areas currently considered not prone to floods will become low flood risk (0.1-1 m water depth). Furthermore, larger sections of the floodplains upstream of the Lilo- an’s Bridge will become moderate flood risk areas (1 - 2 m water depth). The flood hazard maps created for the development of the present project will be presented to the LGU and the model will be used to create a larger set of possible flood prone areas related to rainfall intensity by GTZ’s Local Disaster Risk Management Department and to study possible improvements to the current early warning system and monitoring of the basin section belonging to Ormoc City; recommendations about further enhancement of the geo-hydro-meteorological data to improve the model’s accuracy mainly on areas of interest will also be presented at the LGU.
Resumo:
The multifractal properties of daily rainfall time series at the stations in Pearl River basin of China over periods of up to 45 years are examined using the universal multifractal approach based on the multiplicative cascade model and the multifractal detrended fluctuation analysis (MF-DFA). The results from these two kinds of multifractal analyses show that the daily rainfall time series in this basin have multifractal behavior in two different time scale ranges. It is found that the empirical multifractal moment function K(q)K(q) of the daily rainfall time series can be fitted very well by the universal multifractal model (UMM). The estimated values of the conservation parameter HH from UMM for these daily rainfall data are close to zero indicating that they correspond to conserved fields. After removing the seasonal trend in the rainfall data, the estimated values of the exponent h(2)h(2) from MF-DFA indicate that the daily rainfall time series in Pearl River basin exhibit no long-term correlations. It is also found that K(2)K(2) and elevation series are negatively correlated. It shows a relationship between topography and rainfall variability.