820 resultados para Maps of structured knowledge
Resumo:
This paper describes a proposal of a language called Link which has been designed to formalize and operationalize problem solving strategies. This language is used within a software environment called KSM (Knowledge Structure Manager) which helps developers in formulating and operationalizing structured knowledge models. The paper presents both its syntax and dynamics, and gives examples of well-known problem-solving strategies of reasoning formulated using this language.
Resumo:
Across a range of domains in psychology different theories assume different mental representations of knowledge. For example, in the literature on category-based inductive reasoning, certain theories (e.g., Rogers & McClelland, 2004; Sloutsky & Fisher, 2008) assume that the knowledge upon which inductive inferences are based is associative, whereas others (e.g., Heit & Rubinstein, 1994; Kemp & Tenenbaum, 2009; Osherson, Smith, Wilkie, López, & Shafir, 1990) assume that knowledge is structured. In this article we investigate whether associative and structured knowledge underlie inductive reasoning to different degrees under different processing conditions. We develop a measure of knowledge about the degree of association between categories and show that it dissociates from measures of structured knowledge. In Experiment 1 participants rated the strength of inductive arguments whose categories were either taxonomically or causally related. A measure of associative strength predicted reasoning when people had to respond fast, whereas causal and taxonomic knowledge explained inference strength when people responded slowly. In Experiment 2, we also manipulated whether the causal link between the categories was predictive or diagnostic. Participants preferred predictive to diagnostic arguments except when they responded under cognitive load. In Experiment 3, using an open-ended induction paradigm, people generated and evaluated their own conclusion categories. Inductive strength was predicted by associative strength under heavy cognitive load, whereas an index of structured knowledge was more predictive of inductive strength under minimal cognitive load. Together these results suggest that associative and structured models of reasoning apply best under different processing conditions and that the application of structured knowledge in reasoning is often effortful.
Resumo:
The present research has character exploratory, bibliographic and qualitative. It is based in consolidated scientific arguments in cognitive theories inspired in constructivist method and, under this perspective proposes to develop a didactic guide oriented to students of courses MOOCs - Massive Open Online Courses that will make it possible to maximize the utilization and the assimilation of the knowledge available in these courses. Intends also prepare these students in practice of a methodology of storage that enables the knowledge acquired are not lost nor be forgotten over the course of time. The theoretical framework, based on the theories of Meaningful Learning (Ausubel), the Genetic Epistemology (Piaget), Socioconstructivist (Vigotsky) and the Multimedia Learning (Mayer), subsidizes the understanding of important concepts such as meaningful learning, previous knowledge, and conceptual maps. Supported by fundamental contribution of the Theory of Categories, which are inter-related to concepts applicable to teaching methodology supported by use of structured knowledge maps in the establishment of the binomial teaching-learning; and with valuable study performed by teachers Luciano Lima (UFU) and Rubens Barbosa Filho (UEMS) that culminated with the development of Exponential Effective Memorization Method in Binary Base (Double MEB).
Resumo:
Design knowledge can be acquired from various sources and generally requires an integrated representation for its effective and efficient re-use. Though knowledge about products and processes can illustrate the solutions created (know-what) and the courses of actions (know-how) involved in their creation, the reasoning process (know-why) underlying the solutions and actions is still needed for an integrated representation of design knowledge. Design rationale is an effective way of capturing that missing part, since it records the issues addressed, the options considered, and the arguments used when specific design solutions are created and evaluated. Apart from the need for an integrated representation, effective retrieval methods are also of great importance for the re-use of design knowledge, as the knowledge involved in designing complex products can be huge. Developing methods for the retrieval of design rationale is very useful as part of the effective management of design knowledge, for the following reasons. Firstly, design engineers tend to want to consider issues and solutions before looking at solid models or process specifications in detail. Secondly, design rationale is mainly described using text, which often embodies much relevant design knowledge. Last but not least, design rationale is generally captured by identifying elements and their dependencies, i.e. in a structured way which opens the opportunity for going beyond simple keyword-based searching. In this paper, the management of design rationale for the re-use of design knowledge is presented. The retrieval of design rationale records in particular is discussed in detail. As evidenced in the development and evaluation, the methods proposed are useful for the re-use of design knowledge and can be generalised to be used for the retrieval of other kinds of structured design knowledge. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Design rationale is an effective way of capturing knowledge, since it records the issues addressed, the options considered, and the arguments used when specific decisions are made during the design process. Design rationale is generally captured by identifying elements and their dependencies, i.e. in a structured way. Current retrieval methods focus mainly on either the classification of rationale or on keyword-based searches of records. Keyword-based retrieval is reasonably effective as the information in design rationale records is mainly described using text. However, most of the current keyword-based retrieval methods discard the implicit structures of these records, resulting either in poor precision of retrieval or in isolated pieces of information that are difficult to understand. This ongoing research aims to go beyond keyword-based retrieval by developing methods and tools to facilitate the provision of useful design knowledge in new design projects. Our first step is to understand the structured information derived from the relationship between lumps of text held in different nodes in the design rationale captured via a software tool currently used in industry, and study how this information can be utilised to improve retrieval performance. Specifically, methods for utilising various structured information are developed and implemented on a prototype keyword-based retrieval system developed in our earlier work. The implementation and evaluation of these methods shows that the structured information can be utilised in a number of ways, such as filtering the results and providing more complete information. This allows the retrieval system to present results that are easy to understand, and which closely match designers' queries. Like design rationale, other methods for representing design knowledge also in essence involve structured information and thus the methods proposed can be generalised to be adapted and applied for the retrieval of other kinds of design knowledge. Copyright © 2002-2012 The Design Society. All rights reserved.
Resumo:
Regional Innovation Systems describe the relations between actors, structures and infrastructures in a region in order to stimulate innovation and regional development. For these systems the collection and organization of information is crucial. In the present paper we investigate the possibilities to extract information from websites of companies. First we describe regional innovation systems and the information types that are necessary to create them. Then we discuss the possibilities of text mining and keyword extraction techniques to extract this information from company websites. Finally, we describe a small scale experiment in which keywords related to economic sectors and commodities are extracted from the websites of over 200 companies. This experiment shows what the main challenges are for information extraction from websites for regional innovation systems.
Resumo:
The goal of this thesis is to estimate the effect of the form of knowledge representation on the efficiency of knowledge sharing. The objectives include the design of an experimental framework which would allow to establish this effect, data collection, and statistical analysis of the collected data. The study follows the experimental quantitative design. The experimental questionnaire features three sample forms of knowledge: text, mind maps, concept maps. In the interview, these forms are presented to an interviewee, afterwards the knowledge sharing time and knowledge sharing quality are measured. According to the statistical analysis of 76 interviews, text performs worse in both knowledge sharing time and quality compared to visualized forms of knowledge representation. However, mind maps and concept maps do not differ in knowledge sharing time and quality, since this difference is not statistically significant. Since visualized structured forms of knowledge perform better than unstructured text in knowledge sharing, it is advised for companies to foster the usage of these forms in knowledge sharing processes inside the company. Aside of performance in knowledge sharing, the visualized structured forms are preferable due the possibility of their usage in the system of ontological knowledge management within an enterprise.
Resumo:
Our research project develops an intranet search engine with concept- browsing functionality, where the user is able to navigate the conceptual level in an interactive, automatically generated knowledge map. This knowledge map visualizes tacit, implicit knowledge, extracted from the intranet, as a network of semantic concepts. Inductive and deductive methods are combined; a text ana- lytics engine extracts knowledge structures from data inductively, and the en- terprise ontology provides a backbone structure to the process deductively. In addition to performing conventional keyword search, the user can browse the semantic network of concepts and associations to find documents and data rec- ords. Also, the user can expand and edit the knowledge network directly. As a vision, we propose a knowledge-management system that provides concept- browsing, based on a knowledge warehouse layer on top of a heterogeneous knowledge base with various systems interfaces. Such a concept browser will empower knowledge workers to interact with knowledge structures.
Resumo:
This thesis addressed the problem of risk analysis in mental healthcare, with respect to the GRiST project at Aston University. That project provides a risk-screening tool based on the knowledge of 46 experts, captured as mind maps that describe relationships between risks and patterns of behavioural cues. Mind mapping, though, fails to impose control over content, and is not considered to formally represent knowledge. In contrast, this thesis treated GRiSTs mind maps as a rich knowledge base in need of refinement; that process drew on existing techniques for designing databases and knowledge bases. Identifying well-defined mind map concepts, though, was hindered by spelling mistakes, and by ambiguity and lack of coverage in the tools used for researching words. A novel use of the Edit Distance overcame those problems, by assessing similarities between mind map texts, and between spelling mistakes and suggested corrections. That algorithm further identified stems, the shortest text string found in related word-forms. As opposed to existing approaches’ reliance on built-in linguistic knowledge, this thesis devised a novel, more flexible text-based technique. An additional tool, Correspondence Analysis, found patterns in word usage that allowed machines to determine likely intended meanings for ambiguous words. Correspondence Analysis further produced clusters of related concepts, which in turn drove the automatic generation of novel mind maps. Such maps underpinned adjuncts to the mind mapping software used by GRiST; one such new facility generated novel mind maps, to reflect the collected expert knowledge on any specified concept. Mind maps from GRiST are stored as XML, which suggested storing them in an XML database. In fact, the entire approach here is ”XML-centric”, in that all stages rely on XML as far as possible. A XML-based query language allows user to retrieve information from the mind map knowledge base. The approach, it was concluded, will prove valuable to mind mapping in general, and to detecting patterns in any type of digital information.
Resumo:
Aims--Telemonitoring (TM) and structured telephone support (STS) have the potential to deliver specialised management to more patients with chronic heart failure (CHF), but their efficacy is still to be proven. Objectives To review randomised controlled trials (RCTs) of TM or STS on all- cause mortality and all-cause and CHF-related hospitalisations in patients with CHF, as a non-invasive remote model of specialised disease-management intervention.--Methods and Results--Data sources:We searched 15 electronic databases and hand-searched bibliographies of relevant studies, systematic reviews, and meeting abstracts. Two reviewers independently extracted all data. Study eligibility and participants: We included any randomised controlled trials (RCT) comparing TM or STS to usual care of patients with CHF. Studies that included intensified management with additional home or clinic visits were excluded. Synthesis: Primary outcomes (mortality and hospitalisations) were analysed; secondary outcomes (cost, length of stay, quality of life) were tabulated.--Results: Thirty RCTs of STS and TM were identified (25 peer-reviewed publications (n=8,323) and five abstracts (n=1,482)). Of the 25 peer-reviewed studies, 11 evaluated TM (2,710 participants), 16 evaluated STS (5,613 participants) and two tested both interventions. TM reduced all-cause mortality (risk ratio (RR 0•66 [95% CI 0•54-0•81], p<0•0001) and STS showed similar trends (RR 0•88 [95% CI 0•76-1•01], p=0•08). Both TM (RR 0•79 [95% CI 0•67-0•94], p=0•008) and STS (RR 0•77 [95% CI 0•68-0•87], p<0•0001) reduced CHF-related hospitalisations. Both interventions improved quality of life, reduced costs, and were acceptable to patients. Improvements in prescribing, patient-knowledge and self-care, and functional class were observed.--Conclusion: TM and STS both appear effective interventions to improve outcomes in patients with CHF.
Resumo:
Expert elicitation is the process of determining what expert knowledge is relevant to support a quantitative analysis and then eliciting this information in a form that supports analysis or decision-making. The credibility of the overall analysis, therefore, relies on the credibility of the elicited knowledge. This, in turn, is determined by the rigor of the design and execution of the elicitation methodology, as well as by its clear communication to ensure transparency and repeatability. It is difficult to establish rigor when the elicitation methods are not documented, as often occurs in ecological research. In this chapter, we describe software that can be combined with a well-structured elicitation process to improve the rigor of expert elicitation and documentation of the results