993 resultados para Mapas auto-organizáveis
Resumo:
Self-organizing maps (SOM) are artificial neural networks widely used in the data mining field, mainly because they constitute a dimensionality reduction technique given the fixed grid of neurons associated with the network. In order to properly the partition and visualize the SOM network, the various methods available in the literature must be applied in a post-processing stage, that consists of inferring, through its neurons, relevant characteristics of the data set. In general, such processing applied to the network neurons, instead of the entire database, reduces the computational costs due to vector quantization. This work proposes a post-processing of the SOM neurons in the input and output spaces, combining visualization techniques with algorithms based on gravitational forces and the search for the shortest path with the greatest reward. Such methods take into account the connection strength between neighbouring neurons and characteristics of pattern density and distances among neurons, both associated with the position that the neurons occupy in the data space after training the network. Thus, the goal consists of defining more clearly the arrangement of the clusters present in the data. Experiments were carried out so as to evaluate the proposed methods using various artificially generated data sets, as well as real world data sets. The results obtained were compared with those from a number of well-known methods existent in the literature
Resumo:
Apesar das diversas vantagens oferecidas pelas redes neurais artificiais (RNAs), algumas limitações ainda impedem sua larga utilização, principalmente em aplicações que necessitem de tomada de decisões essenciais para garantir a segurança em ambientes como, por exemplo, em Sistemas de Energia. Uma das principais limitações das RNAs diz respeito à incapacidade que estas redes apresentam de explicar como chegam a determinadas decisões; explicação esta que seja humanamente compreensível. Desta forma, este trabalho propõe um método para extração de regras a partir do mapa auto-organizável de Kohonen, projetando um sistema de inferência difusa capaz de explicar as decisões/classificação obtidas através do mapa. A metodologia proposta é aplicada ao problema de diagnóstico de faltas incipientes em transformadores, em que se obtém um sistema classificatório eficiente e com capacidade de explicação em relação aos resultados obtidos, o que gera mais confiança aos especialistas da área na hora de tomar decisões.
Resumo:
A principal dificuldade encontrada na proteção diferencial de transformadores de potência é a correta distinção entre as correntes de inrush e as correntes de faltas internas. Tradicionalmente os relés diferenciais executam esta tarefa utilizando a técnica de restrição por harmônicos baseada na premissa de que as correntes de inrush possuem alta concentração de componentes harmônicas de segunda ordem, contudo essa técnica nem sempre é eficaz. O presente trabalho tem como objetivo apresentar a proposta de duas novas metodologias capazes de realizar a identificação e distinção entre as correntes de inrush das correntes de faltas internas na proteção diferencial de transformadores de potência através de metodologias que não dependem do conteúdo de harmônicos do sinal da corrente diferencial. A primeira metodologia proposta, denominada de método do gradiente da corrente diferencial, é baseada no comportamento do vetor gradiente, obtido através da diferenciação numérica do sinal da corrente diferencial. O critério de distinção utilizado é baseado no desvio padrão do ângulo do vetor gradiente que apresenta comportamento diferenciado para correntes de inrush e correntes de curto-circuito. A segunda metodologia proposta é baseada na capacidade de reconhecimento e classificação de padrões das redes neurais de Mapeamento Auto-organizável de Kohonen. Como padrão de entrada e de treinamento da rede neural é utilizado um vetor contendo quatro níveis do espectro do desvio padrão do ângulo do vetor gradiente da corrente diferencial nas três fases do transformador de potência. A eficácia dos métodos foi testada através da simulação de diversas situações de faltas internas e correntes de inrush, incluindo situações de “Sympathetic Inrush”, em um transformador de potência usando o software EMTP/ATP e através da implementação do algoritmo em MATLAB®, apresentando resultados altamente promissores.
Resumo:
O escoamento bifásico de gás-líquido é encontrado em muitos circuitos fechados que utilizam circulação natural para fins de resfriamento. O fenômeno da circulação natural é importante nos recentes projetos de centrais nucleares para a remoção de calor. O circuito de circulação natural (Circuito de Circulação Natural - CCN), instalado no Instituto de Pesquisas Energéticas e Nucleares, IPEN / CNEN, é um circuito experimento concebido para fornecer dados termo-hidráulicos relacionados com escoamento monofásico ou bifásico em condições de circulação natural. A estimativa de transferência de calor tem sido melhorada com base em modelos que requerem uma previsão precisa de transições de padrão de escoamento. Este trabalho apresenta testes experimentais desenvolvidos no CCN para a visualização dos fenômenos de instabilidade em ciclos de circulação natural básica e classificar os padrões de escoamento bifásico associados aos transientes e instabilidades estáticas de escoamento. As imagens são comparadas e agrupadas utilizando mapas auto-organizáveis de Kohonen (SOM), aplicados em diferentes características da imagem digital. Coeficientes da Transformada Discreta de Cossenos de Quadro Completo (FFDCT) foram utilizados como entrada para a tarefa de classificação, levando a bons resultados. Os protótipos de FFDCT obtidos podem ser associados a cada padrão de escoamento possibilitando uma melhor compreensão da instabilidade observada. Uma metodologia sistemática foi utilizada para verificar a robustez do método.
Resumo:
Visando oferecer subsídios para a avaliação do Plano Territorial de Desenvolvimento Rural Sustentável do Ministério do Desenvolvimento Agrário este trabalho teve como objetivo a aplicação da análise de componentes principais, da análise de agrupamentos pelo método hierárquico aglomerativo e da rede neural do tipo Mapa Auto-Organizável de Kohonen na análise exploratória de resultados de simulações sociais computacionais do sistema socioterritorial ?Território Rural Sul "sergipano?. A metodologia basea-se na Sociologia da Ação Organizada e no método Soclab. As análises estatísticas mostraram que o sistema socioterritorial em questão tem estrutura simples e determinística, ou seja, apresenta um jogo social cooperativo com forte tendência à estabilidade mesmo com situações de interesses divergentes. A análise neural permitiu a caracterização das situações atípicas quando ocorrem a estabilidade do sistema social.
Resumo:
We propose a multi-resolution approach for surface reconstruction from clouds of unorganized points representing an object surface in 3D space. The proposed method uses a set of mesh operators and simple rules for selective mesh refinement, with a strategy based on Kohonen s self-organizing map. Basically, a self-adaptive scheme is used for iteratively moving vertices of an initial simple mesh in the direction of the set of points, ideally the object boundary. Successive refinement and motion of vertices are applied leading to a more detailed surface, in a multi-resolution, iterative scheme. Reconstruction was experimented with several point sets, induding different shapes and sizes. Results show generated meshes very dose to object final shapes. We include measures of performance and discuss robustness.
Resumo:
Este estudo investiga se a política de distribuição de resultados seria capaz de alterar os preços das ações de uma empresa. O objetivo deste trabalho é discutir os impactos do pagamento de proventos sobre os preços das ações, na data ex direito, de empresas maduras e de empresas em expansão, considerando-se ainda o efeito da classe da ação (ordinária ou preferencial) sobre os resultados. Para tal, adotou-se a metodologia de dados em painel, segmentando a amostra a partir dos Mapas Auto-organizáveis de Kohonen. Os resultados revelam que a estratégia de curto prazo de comprar ações na última data com, vender na primeira data ex e embolsar os dividendos é capaz de gerar perdas de capital que superam em até quatro vezes o ganho líquido decorrente do provento embolsado.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Originally aimed at operational objectives, the continuous measurement of well bottomhole pressure and temperature, recorded by permanent downhole gauges (PDG), finds vast applicability in reservoir management. It contributes for the monitoring of well performance and makes it possible to estimate reservoir parameters on the long term. However, notwithstanding its unquestionable value, data from PDG is characterized by a large noise content. Moreover, the presence of outliers within valid signal measurements seems to be a major problem as well. In this work, the initial treatment of PDG signals is addressed, based on curve smoothing, self-organizing maps and the discrete wavelet transform. Additionally, a system based on the coupling of fuzzy clustering with feed-forward neural networks is proposed for transient detection. The obtained results were considered quite satisfactory for offshore wells and matched real requisites for utilization
Resumo:
As concessionárias de energia, para garantir que sua rede seja confiável, necessitam realizar um procedimento para estudo e análise baseado em funções de entrega de energia nos pontos de consumo. Este estudo, geralmente chamado de planejamento de sistemas de distribuição de energia elétrica, é essencial para garantir que variações na demanda de energia não afetem o desempenho do sistema, que deverá se manter operando de maneira técnica e economicamente viável. Nestes estudos, geralmente são analisados, demanda, tipologia de curva de carga, fator de carga e outros aspectos das cargas existentes. Considerando então a importância da determinação das tipologias de curvas de cargas para as concessionárias de energia em seu processo de planejamento, a Companhia de Eletricidade do Amapá (CEA) realizou uma campanha de medidas de curvas de carga de transformadores de distribuição para obtenção das tipologias de curvas de carga que caracterizam seus consumidores. Neste trabalho apresentam-se os resultados satisfatórios obtidos a partir da utilização de Mineração de Dados baseada em Inteligência Computacional (Mapas Auto-Organizáveis de Kohonen) para seleção das curvas típicas e determinação das tipologias de curvas de carga de consumidores residenciais e industriais da cidade de Macapá, localizada no estado do Amapá. O mapa auto-organizável de Kohonen é um tipo de Rede Neural Artificial que combina operações de projeção e agrupamento, permitindo a realização de análise exploratória de dados, com o objetivo de produzir descrições sumarizadas de grandes conjuntos de dados.
Resumo:
A fragilidade brasileira quanto à competitividade turística é um fato observável nos dados da Organização Mundial do Turismo. O Brasil caiu em 2011, da 45ª para a 52ª posição, apesar de liderar no atributo recursos naturais e estar colocado na 23° em recursos culturais. Assim, grandes interesses e esforços têm sido direcionados para o estudo da competitividade dos produtos e destinos turísticos. O destino turístico é caracterizado por um conjunto complexo e articulado de fatores tangíveis e intangíveis, apresentando alta complexidade, dados de elevada dimensionalidade, não linearidade e comportamento dinâmico, tornando-se difícil a modelagem desses processos por meio de abordagens baseadas em técnicas estatísticas clássicas. Esta tese investigou modelos de equações estruturais e seus algoritmos, aplicados nesta área, analisando o ciclo completo de análise de dados, em um processo confirmatório no desenvolvimento e avaliação de um modelo holístico da satisfação do turista; na validação da estrutura do modelo de medida e do modelo estrutural, por meio de testes de invariância de múltiplos grupos; na análise comparativa dos métodos de estimação MLE, GLS e ULS para a modelagem da satisfação e na realização de segmentação de mercado no setor de destino turístico utilizando mapas auto-organizáveis de Kohonen e sua validação com modelagem de equações estruturais. Aplicações foram feitas em análises de dados no setor de turismo, principal indústria de serviços do Estado do Rio Grande do Norte, tendo sido, teoricamente desenvolvidos e testados empiricamente, modelos de equações estruturais em padrões comportamentais de destino turístico. Os resultados do estudo empírico se basearam em pesquisas com a técnica de amostragem aleatória sistemática, efetuadas em Natal-RN, entre Janeiro e Março de 2013 e forneceram evidências sustentáveis de que o modelo teórico proposto é satisfatório, com elevada capacidade explicativa e preditiva, sendo a satisfação o antecedente mais importante da lealdade no destino. Além disso, a satisfação é mediadora entre a geração da motivação da viagem e a lealdade do destino e que os turistas buscam primeiro à satisfação com a qualidade dos serviços de turismo e, posteriormente, com os aspectos que influenciam a lealdade. Contribuições acadêmicas e gerenciais são mostradas e sugestões de estudo são dadas para trabalhos futuros.
Resumo:
No mercado de telecomunicações as transformações tecnológicas das últimas décadas aliaram-se a um cenário formado por empresas de alta tecnologia que caracterizam o setor de comunicações móveis pessoais em todo mundo. Neste contexto, as empresas deste setor preocupam-se cada vez mais com a competitividade, oferta de serviços, área de atendimento, demanda reprimida e a lealdade do cliente. Estudos de comportamento do consumidor pesquisam a satisfação e lealdade de clientes como fatores básicos para relações bem sucedidas e duradouras com as empresas. A complexidade das relações entre variáveis na avaliação da satisfação do cliente em comunicações móveis pode ser adequadamente pesquisada com a utilização de métodos estatísticos multivariados. Essa tese analisou as relações causais envolvendo os antecedentes e consequentes associados à satisfação do cliente, no segmento de comunicações móveis, bem como desenvolveu e validou um modelo comportamental do cliente no uso deste serviço, buscando explicar as relações entre os construtos envolvidos: satisfação, qualidade dos serviços, valor percebido, imagem da marca, lealdade e reclamação. Foi estabelecida uma ampla base teórica para avaliar a importância estratégica do modelo que relaciona a influência na satisfação do serviço com as percepções dos clientes e avaliada a precisão deste modelo, por meio de uma análise comparativa a utilização de três métodos de estimação dos seus parâmetros, MLE, GLS, e ULS, com o emprego de modelagem de equações estruturais. Foram feitas aplicações em análises de dados, sendo testada e avaliada empiricamente, a influência do gênero na satisfação do cliente deste setor, além de uma segmentação de mercado utilizando mapas auto-organizáveis e a correspondente validação deste processo, com modelagem de equações estruturais.Os resultados do estudo empírico produziram uma boa qualidade de ajustamento para o modelo teórico proposto, com evidências do estabelecimento de uma adequada capacidade explicativa e preditiva, destacando-se a relevância da relação causal entre a satisfação e lealdade, em consonância com diversos estudos realizados para os mercados de comunicações móveis.
Resumo:
Originally aimed at operational objectives, the continuous measurement of well bottomhole pressure and temperature, recorded by permanent downhole gauges (PDG), finds vast applicability in reservoir management. It contributes for the monitoring of well performance and makes it possible to estimate reservoir parameters on the long term. However, notwithstanding its unquestionable value, data from PDG is characterized by a large noise content. Moreover, the presence of outliers within valid signal measurements seems to be a major problem as well. In this work, the initial treatment of PDG signals is addressed, based on curve smoothing, self-organizing maps and the discrete wavelet transform. Additionally, a system based on the coupling of fuzzy clustering with feed-forward neural networks is proposed for transient detection. The obtained results were considered quite satisfactory for offshore wells and matched real requisites for utilization