898 resultados para Map tasks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the longitudinal performance of 583 students on six map items that were represented in various graphic forms. Specifically, this study compared the performance of 7-9-year-olds (across Grades 2 and 3) from metropolitan and non-metropolitan locations. The results of the study revealed significant performance differences in favour of metropolitan students on two of six map tasks. Implications include the need for teachers in non-metropolitan locations to ensure that their students do not overly fixate on landmarks represented on maps but rather consider the arrangement of all elements encompassed within the graphic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study considers the role and nature of co-thought gestures when students process map-based mathematics tasks. These gestures are typically spontaneously produced silent gestures which do not accompany speech and are represented by small movements of the hands or arms often directed toward an artefact. The study analysed 43 students (aged 10–12 years) over a 3-year period as they solved map tasks that required spatial reasoning. The map tasks were representative of those typically found in mathematics classrooms for this age group and required route finding and coordinate knowledge. The results indicated that co-thought gestures were used to navigate the problem space and monitor movements within the spatial challenges of the respective map tasks. Gesturing was most influential when students encountered unfamiliar tasks or when they found the tasks spatially demanding. From a teaching and learning perspective, explicit co-thought gesturing highlights cognitive challenges students are experiencing since students tended to not use gesturing in tasks where the spatial demands were low.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maps are used to represent three-dimensional space and are integral to a range of everyday experiences. They are increasingly used in mathematics, being prominent both in school curricula and as a form of assessing students understanding of mathematics ideas. In order to successfully interpret maps, students need to be able to understand that maps: represent space, have their own perspective and scale, and their own set of symbols and texts. Despite the fact that maps have an increased prevalence in society and school, there is evidence to suggest that students have difficulty interpreting maps. This study investigated 43 primary-aged students’ (aged 9-12 years) verbal and gestural behaviours as they engaged with and solved map tasks. Within a multiliteracies framework that focuses on spatial, visual, linguistic, and gestural elements, the study investigated how students interpret map tasks. Specifically, the study sought to understand students’ skills and approaches used to solving map tasks and the gestural behaviours they utilised as they engaged with map tasks. The investigation was undertaken using the Knowledge Discovery in Data (KDD) design. The design of this study capitalised on existing research data to carry out a more detailed analysis of students’ interpretation of map tasks. Video data from an existing data set was reorganised according to two distinct episodes—Task Solution and Task Explanation—and analysed within the multiliteracies framework. Content Analysis was used with these data and through anticipatory data reduction techniques, patterns of behaviour were identified in relation to each specific map task by looking at task solution, task correctness and gesture use. The findings of this study revealed that students had a relatively sound understanding of general mapping knowledge such as identifying landmarks, using keys, compass points and coordinates. However, their understanding of mathematical concepts pertinent to map tasks including location, direction, and movement were less developed. Successful students were able to interpret the map tasks and apply relevant mathematical understanding to navigate the spatial demands of the map tasks while the unsuccessful students were only able to interpret and understand basic map conventions. In terms of their gesture use, the more difficult the task, the more likely students were to exhibit gestural behaviours to solve the task. The most common form of gestural behaviour was deictic, that is a pointing gesture. Deictic gestures not only aided the students capacity to explain how they solved the map tasks but they were also a tool which assisted them to navigate and monitor their spatial movements when solving the tasks. There were a number of implications for theory, learning and teaching, and test and curriculum design arising from the study. From a theoretical perspective, the findings of the study suggest that gesturing is an important element of multimodal engagement in mapping tasks. In terms of teaching and learning, implications include the need for students to utilise gesturing techniques when first faced with new or novel map tasks. As students become more proficient in solving such tasks, they should be encouraged to move beyond a reliance on such gesture use in order to progress to more sophisticated understandings of map tasks. Additionally, teachers need to provide students with opportunities to interpret and attend to multiple modes of information when interpreting map tasks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MapReduce is a computation model for processing large data sets in parallel on large clusters of machines, in a reliable, fault-tolerant manner. A MapReduce computation is broken down into a number of map tasks and reduce tasks, which are performed by so called mappers and reducers, respectively. The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation in cloud computing. From the computational point of view, the mappers/reducers placement problem is a generation of the classical bin packing problem, which is NP-complete. Thus, in this paper we propose a new heuristic algorithm for the mappers/reducers placement problem in cloud computing and evaluate it by comparing with other several heuristics on solution quality and computation time by solving a set of test problems with various characteristics. The computational results show that our heuristic algorithm is much more efficient than the other heuristics and it can obtain a better solution in a reasonable time. Furthermore, we verify the effectiveness of our heuristic algorithm by comparing the mapper/reducer placement for a benchmark problem generated by our heuristic algorithm with a conventional mapper/reducer placement which puts a fixed number of mapper/reducer on each machine. The comparison results show that the computation using our mapper/reducer placement is much cheaper than the computation using the conventional placement while still satisfying the computation deadline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MapReduce is a computation model for processing large data sets in parallel on large clusters of machines, in a reliable, fault-tolerant manner. A MapReduce computation is broken down into a number of map tasks and reduce tasks, which are performed by so called mappers and reducers, respectively. The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation. From the computational point of view, the mappers/reducers placement problem is a generation of the classical bin packing problem, which is NPcomplete. Thus, in this paper we propose a new grouping genetic algorithm for the mappers/reducers placement problem in cloud computing. Compared with the original one, our grouping genetic algorithm uses an innovative coding scheme and also eliminates the inversion operator which is an essential operator in the original grouping genetic algorithm. The new grouping genetic algorithm is evaluated by experiments and the experimental results show that it is much more efficient than four popular algorithms for the problem, including the original grouping genetic algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Male and female heroin-dependent patients (HDPs) matched with "normal" people were tested on 4 topographical orientation tasks: schematic map-following, map-memory, schematic picture-following, and picture-memory tasks. The results showed that, in general

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern enterprise knowledge management systems typically require distributed approaches and the integration of numerous heterogeneous sources of information. A powerful foundation for these tasks can be Topic Maps, which not only provide a semantic net-like knowledge representation means and the possibility to use ontologies for modelling knowledge structures, but also offer concepts to link these knowledge structures with unstructured data stored in files, external documents etc. In this paper, we present the architecture and prototypical implementation of a Topic Map application infrastructure, the ‘Topic Grid’, which enables transparent, node-spanning access to different Topic Maps distributed in a network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capacity to solve tasks that contain high concentrations of visual-spatial information, including graphs, maps and diagrams, is becoming increasingly important in educational contexts as well as everyday life. This research examined gender differences in the performance of students solving graphics tasks from the Graphical Languages in Mathematics (GLIM) instrument that included number lines, graphs, maps and diagrams. The participants were 317 Australian students (169 males and 148 females) aged 9 to 12 years. Boys outperformed girls on graphical languages that required the interpretation of information represented on an axis and graphical languages that required movement between two- and three-dimensional representations (generally Map language).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a minimalistic approach to produce a visual hybrid map of a mobile robot’s working environment. The proposed system uses omnidirectional images along with odometry information to build an initial dense posegraph map. Then a two level hybrid map is extracted from the dense graph. The hybrid map consists of global and local levels. The global level contains a sparse topological map extracted from the initial graph using a dual clustering approach. The local level contains a spherical view stored at each node of the global level. The spherical views provide both an appearance signature for the nodes, which the robot uses to localize itself in the environment, and heading information when the robot uses the map for visual navigation. In order to show the usefulness of the map, an experiment was conducted where the map was used for multiple visual navigation tasks inside an office workplace.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel method to rank map hypotheses by the quality of localization they afford. The highest ranked hypothesis at any moment becomes the active representation that is used to guide the robot to its goal location. A single static representation is insufficient for navigation in dynamic environments where paths can be blocked periodically, a common scenario which poses significant challenges for typical planners. In our approach we simultaneously rank multiple map hypotheses by the influence that localization in each of them has on locally accurate odometry. This is done online for the current locally accurate window by formulating a factor graph of odometry relaxed by localization constraints. Comparison of the resulting perturbed odometry of each hypothesis with the original odometry yields a score that can be used to rank map hypotheses by their utility. We deploy the proposed approach on a real robot navigating a structurally noisy office environment. The configuration of the environment is physically altered outside the robots sensory horizon during navigation tasks to demonstrate the proposed approach of hypothesis selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: GPS technology enables the visualisation of a map reader s location on a mobile map. Earlier research on the cognitive aspects of map reading identified that searching for map-environment points is an essential element for the process of determining one s location on a mobile map. Map-environment points refer to objects that are visualized on the map and are recognizable in the environment. However, because the GPS usually adds only one point to the map that has a relation to the environment, it does not provide a sufficient amount of information for self-location. The aim of the present thesis was to assess the effect of GPS on the cognitive processes involved in determining one s location on a map. Methods: The effect of GPS on self-location was studied in a field experiment. The subjects were shown a target on a mobile map, and they were asked to point in the direction of the target. In order for the map reader to be able to deduce the direction of the target, he/she has to locate himself/herself on the map. During the pointing tasks, the subjects were asked to think aloud. The data from the experiment were used to analyze the effect of the GPS on the time needed to perform the task. The subjects verbal data was used to assess the effect of the GPS on the number of landmark concepts mentioned during a task (landmark concepts are words referring to objects that can be recognized both on the map and in the environment). Results and conclusions: The results from the experiment indicate that the GPS reduces the time needed to locate oneself on a map. The analysis of the verbal data revealed that the GPS reduces the number of landmark concepts in the protocols. The findings suggest that the GPS guides the subject s search for the map-environment points and narrows the area on the map that must be searched for self-location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we have proposed a centralized multicast authentication protocol (MAP) for dynamic multicast groups in wireless networks. In our protocol, a multicast group is defined only at the time of the multicasting. The authentication server (AS) in the network generates a session key and authenticates it to each of the members of a multicast group using the computationally inexpensive least common multiple (LCM) method. In addition, a pseudo random function (PRF) is used to bind the secret keys of the network members with their identities. By doing this, the AS is relieved from storing per member secrets in its memory, making the scheme completely storage scalable. The protocol minimizes the load on the network members by shifting the computational tasks towards the AS node as far as possible. The protocol possesses a membership revocation mechanism and is protected against replay attack and brute force attack. Analytical and simulation results confirm the effectiveness of the proposed protocol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Billions of songbirds migrate several thousand kilometers from breeding to wintering grounds and are challenged with crossing ecological barriers and facing displacement by winds along the route. A satisfactory explanation of long-distance animal navigation is still lacking, partly because of limitations on field-based study. The navigational tasks faced by adults and juveniles differ fundamentally, because only adults migrate toward wintering grounds known from the previous year. Here, we show by radio tracking from small aircraft that only adult, and not juvenile, long-distance migrating white-crowned sparrows rapidly recognize and correct for a continent-wide displacement of 3,700 km from the west coast of North America to previously unvisited areas on the east coast. These results show that the learned navigational map used by adult long-distance migratory songbirds extends at least on a continental scale. The juveniles with less experience rely on their innate program to find their distant wintering areas and continue to migrate in the innate direction without correcting for displacement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a methodology for optimizing the execution of data parallel (sub-)tasks on CPU and GPU cores of the same heterogeneous architecture. The methodology is based on two main components: i) an analytical performance model for scheduling tasks among CPU and GPU cores, such that the global execution time of the overall data parallel pattern is optimized; and ii) an autonomic module which uses the analytical performance model to implement the data parallel computations in a completely autonomic way, requiring no programmer intervention to optimize the computation across CPU and GPU cores. The analytical performance model uses a small set of simple parameters to devise a partitioning-between CPU and GPU cores-of the tasks derived from structured data parallel patterns/algorithmic skeletons. The model takes into account both hardware related and application dependent parameters. It computes the percentage of tasks to be executed on CPU and GPU cores such that both kinds of cores are exploited and performance figures are optimized. The autonomic module, implemented in FastFlow, executes a generic map (reduce) data parallel pattern scheduling part of the tasks to the GPU and part to CPU cores so as to achieve optimal execution time. Experimental results on state-of-the-art CPU/GPU architectures are shown that assess both performance model properties and autonomic module effectiveness. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.