945 resultados para Mangrove vegetation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study is a compilation of the literature about vegetation of mangrove forest of the north coast of Brazil. It synthesizes the knowledge about this important ecosystem and lists the currently available literature. The study focuses on the coast of Pará and Maranhão states, which are covered by a continuous belt of mangroves. The mangrove flora comprises six mangrove tree species and several associated species. Mangrove tree height and stem diameter vary as a function of abiotic local stand parameters. Seasonal variation in rainfall and salinity affect the species' phenology and litter fall. Local population use products derived from mangrove plants for different purposes (e.g. fuel; medicinal; rural construction). The increase in the coastal population has given rise to conflicts, which impact on mangrove forest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study analyzed the composition of the aquatic fauna associated to the mangrove forest in a southeastern Brazilian river. The composition of the macrofauna in the roots of the marginal vegetation located at three different salinity stretches was analyzed by sampling pieces of the submerged branches of the vegetation (natural substrate) and pieces of sisal rope (artificial substrate), installed close to the natural vegetation and sampled after a period of 14 colonization days. In both types of substrate, twelve taxonomic groups were sampled, representing three phyla (Cnidaria, Annelida and Arthropoda). The crustaceans, corresponding to the most diversified group, were represented by Copepoda, Tanaidacea, Isopoda, Amphipoda and Decapoda. The highest salinity stretch showed the highest abundance, with a progressive decrease from high to low salinity for both substrates. Copepoda and Tanaidacea predominated on both substrates, although the artificial substrate exhibited the highest total abundance and species richness. Considering the relative abundance of the taxonomic groups on both substrates, the majority of groups predominated in the highest salinity range. Significant differences on the longitudinal distribution of abundance were associated to the variation on salinity and with the complexity of the substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente estudo apresenta uma compilação da literatura sobre a vegetação dos manguezais da costa norte do Brasil, apresentando uma síntese do conhecimento e listando a literatura disponível. O estudo se concentra na costa dos estados do Pará e Maranhão que formam um cinturão contínuo de manguezais. Foram contabilizadas seis espécies arbóreas exclusivas de mangue e várias outras associadas. A altura e o diâmetro das árvores de mangue variam em função de parâmetros abióticos locais. As variações sazonais do regime de chuvas e da salinidade afetam a fenologia das espécies e a produção de serapilheira. A população costeira utiliza a flora do manguezal para diferentes fins (ex: combustível, medicinal, construção rural). O aumento da ocupação costeira inicia um processo de impacto para as florestas de mangue e a disponibilidade de seus recursos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study was to analyze the diet of fish species that use the mangrove vegetation for shelter and feeding in a river southeastern Brazil. The fieldwork, including collecting and underwater observations, was carried out in the dry (July and August 2004) and in the rainy season (February and March 2005) in order to assess the existence of seasonal variation in the diets. Seven kinds of food items were consumed, two of plant origin and five of animal origin. Crustaceans predominated in the diet of most species, either in the form of unidentified fragments or discriminated in eight groups. The predominance of species using mainly a single food source (crustaceans, principally Ostracoda and Tanaidacea) and the existence of seasonal variation in the diets of some species became very evident in the analysis food niche breadth, with a predominance of dietary specialists. In the Rio da Fazenda mangrove, the submersed marginal vegetation was used by the ichthyofauna as a locale for foraging, and principally as cover by bottom-feeding species. These species may be using the vegetation for protection from aerial and aquatic predators, or even from the pull of the current during the turn of the tide. In the study area, the great diversity of crustaceans constitutes an important food source for most fish species which adjusted their diet according to seasonal changes in food availability and to interactions with other species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The situation in the backwaters of Kerala, which reportedly had about 70,000 ha of mangroves, is unique in the sense that there has been a total conversion to other uses such as paddy cultivation, coconut plantation, aquaculture, harbour development and urban development In order to save and restore what is left over national and international organisations are mounting pressure on scientists and policy makers to work out ways and means conserving and managing the mangrove ecosystems. In this context, it has been observed in recent years that mangrove vegetation has remained intact in isolated pockets of undisturbed areas in the Cochin estuarine system and also that there is resurgence of mangroves in areas of accretion and silting. The candidate took up the present study with a view to make an inventory of the existing mangrove locations, the areas of resurgence, species composition, zonation and other ecological parameters to understand their dynamism and to suggest a mangement plan for this important coastal ecosystem

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Five zones along a transect of 180 m were selected for study on the Island of Pai Matos (Sao Paulo, Brazil). Four of the zones are colonised by vascular plants (Spartina SP, Laguncularia LG, Avicennia AV and Rhizophora RH) and were denominated soils, and the other zone, which lacks vegetation, was denominated sediment (SD). The geochemical conditions differed significantly in soils and sediment and also at different depths. The soils were oxic (Eh > 350 mV) or suboxic (Eh: 350-100 mV) at the surface and anoxic (Eh < 100 mV) at depth, whereas in the sediment anoxic conditions prevailed at all depths, but with a lower concentration of sulphides in the pore water and pyrite in the solid fraction. Under these geochemical conditions Fe is retained in the soils, while the Mn tends to be mobilized and lost. The most abundant form of iron oxyhydroxide was lepidocrocite (mean concentration for all sites and depths, 45 +/- 19 mu mol g(-1)), followed by goethite (30 19 mu mol g(-1))and ferrihydrite (19 +/- 11 mu mol g(-1)),with significant differences among the mean concentrations. There was a significant decrease with depth in all the types of Fe oxyhydroxides measured, particularly the poorly crystalline forms. The pyrite fraction was an important component of the free Fe pool (non-silicate Fe) in all soils as well as in the sediment, especially below 20 cm depth (mean concentration for all sites and depths, 60 +/- 54 mu mol CI). Furthermore, the mean concentration of Fe-pyrite for all sites and depths was higher than that obtained for any of the three Fe oxyhydroxides measured. The Fe-AVS was a minor fraction, indicating that the high concentrations of dissolved Fe in the soils in the upper area of the transect result from the oxidation of Fe sulphides during low tide. Mossbauer spectroscopy also revealed that most of the Fe (III) was associated with silicates, in this case nontronite. The presence of crystals of pyrite associated with phyllosilicates in samples from the upper layer of the soils may indicate that pyritization of this form of Fe(III) is more rapid than usually reported for ocean bed sediments. The sequential extraction of Mn did not reveal any clearly dominant fraction, with the Mn-carbonate fraction being the most prevalent, followed by exchangeable Mn and oxides of Mn, whereas pyrite-Mn and Mn associated with crystalline Fe-oxides were present at significantly lower concentrations. The high concentration of dissolved Mn found in the soils in the lower part of the transect is consistent with the fact that the solubility is determined by the carbonate fraction. Unlike for Fe, in the soils in the higher zone, which are subject to intense drainage during low tide, there was loss of Mn, as reflected by the concentration of total Mn. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oil spills are potential threats to the integrity of highly productive coastal wetlands, such as mangrove forests. In October 1983, a mangrove area of nearly 300 ha located on the southeastern coast of Brazil was impacted by a 3.5 million liter crude oil spill released by a broken pipeline. In order to assess the long-term effects of oil pollution on mangrove vegetation, we carried out a GIS-based multitemporal analysis of aerial photographs of the years 1962, 1994, 2000 and 2003. Photointerpretation, visual classification, class quantification, ground-truth and vegetation structure data were combined to evaluate the oil impact. Before the spill, the mangroves exhibited a homogeneous canopy and well-developed stands. More than ten years after the spill, the mangrove vegetation exhibited three distinct zones reflecting the long-term effects of the oil pollution. The most impacted zone (10.5 ha) presented dead trees, exposed substrate and recovering stands with reduced structural development. We suggest that the distinct impact and recovery zones reflect the spatial variability of oil removal rates in the mangrove forest. This study identifies the multitemporal analysis of aerial photographs as a useful tool for assessing a system's capacity for recovery and monitoring the long-term residual effects of pollutants on vegetation dynamics, thus giving support to mangrove forest management and conservation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oil spills are potential threats to the integrity of highly productive coastal wetlands, such as mangrove forests. In October 1983, a mangrove area of nearly 300 ha located on the southeastern coast of Brazil was impacted by a 3.5 million liter crude oil spill released by a broken pipeline. In order to assess the long-term effects of oil pollution on mangrove vegetation, we carried out a GIS-based multitemporal analysis of aerial photographs of the years 1962, 1994, 2000 and 2003. Photointerpretation, visual classification, class quantification, ground-truth and vegetation structure data were combined to evaluate the oil impact. Before the spill, the mangroves exhibited a homogeneous canopy and well-developed stands. More than ten years after the spill, the mangrove vegetation exhibited three distinct zones reflecting the long-term effects of the oil pollution. The most impacted zone (10.5 ha) presented dead trees, exposed substrate and recovering stands with reduced structural development. We suggest that the distinct impact and recovery zones reflect the spatial variability of oil removal rates in the mangrove forest. This study identifies the multitemporal analysis of aerial photographs as a useful tool for assessing a system's capacity for recovery and monitoring the long-term residual effects of pollutants on vegetation dynamics, thus giving support to mangrove forest management and conservation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three sediment cores from the Bragança Peninsula located in the coastal region in the north-eastern portion of Pará State have been studied by pollen analysis to reconstruct Holocene environmental changes and dynamics of the mangrove ecosystem. The cores were taken from an Avicennia forest (Bosque de Avicennia (BDA)), a salt marsh area (Campo Salgado (CS)) and a Rhizophora dominated area (Furo do Chato). Pollen traps were installed in five different areas of the peninsula to study modern pollen deposition. Nine accelerator mass spectrometry radiocarbon dates provide time control and show that sediment deposits accumulated relatively undisturbed. Mangrove vegetation started to develop at different times at the three sites: at 5120 14C yr BP at the CS site, at 2170 14C yr BP at the BDA site and at 1440 14C yr BP at the FDC site. Since mid Holocene times, the mangroves covered even the most elevated area on the peninsula, which is today a salt marsh, suggesting somewhat higher relative sea-levels. The pollen concentration in relatively undisturbed deposits seems to be an indicator for the frequency of inundation. The tidal inundation frequency decreased, probably related to lower sea-levels, during the late Holocene around 1770 14C yr BP at BDA, around 910 14C yr BP at FDC and around 750 14C yr BP at CS. The change from a mangrove ecosystem to a salt marsh on the higher elevation, around 420 14C yr BP is probably natural and not due to an anthropogenic impact. Modern pollen rain from different mangrove types show different ratios between Rhizophora and Avicennia pollen, which can be used to reconstruct past composition of the mangrove. In spite of bioturbation and especially tidal inundation, which change the local pollen deposition within the mangrove zone, past mangrove dynamics can be reconstructed. The pollen record for BDA indicates a mixed Rhizophora/Avicennia mangrove vegetation between 2170 and 1770 14C yr BP. Later Rhizophora trees became more frequent and since ca. 200 14C yr BP Avicennia dominated in the forest.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study focused on the shorebird activity along the Surinamese coast in relation to the mangrove ecosystem health. The health of three estuarine mangrove areas was assessed using important bioindicators of the mangrove ecosystem: crabs, birds and mangroves. Mangrove vegetation was measured at Weg Naar Zee, Matapica canal delta and Coronie coast. Crab activity was measured by burrow and crab counts. Occurring shorebirds were also counted at these areas. The results show that mangrove regeneration and shorebird activity is significantly related to the health of the ecosystem. Weg Naar Zee was the most damaged and highest at risk. Matapica canal delta and the Coronie coast were the least damaged, with Coronie coast showing greatest health and biodiversity of the indicators.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ∼218 ± 72 Tg C a−1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ∼112 ± 85 Tg C a−1, equivalent in magnitude to ∼30–40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Patterns of mangrove vegetation in two distinct basins of Florida Coastal Everglades (FCE), Shark River estuary and Taylor River Slough, represent unique opportunities to test hypotheses that root dynamics respond to gradients of resources, regulators, and hydroperiod. We propose that soil total phosphorus (P) gradients in these two coastal basins of FCE cause specific patterns in belowground biomass allocation and net primary productivity that facilitate nutrient acquisition, but also minimize stress from regulators and hydroperiod in flooded soil conditions. Shark River basin has higher P and tidal hydrology with riverine mangroves, in contrast to scrub mangroves of Taylor basin with more permanent flooding and lower P across the coastal landscape. Belowground biomass (0–90 cm) of mangrove sites in Shark River and Taylor River basins ranged from 2317 to 4673 g m-2, with the highest contribution (62–85%) of roots in the shallow root zone (0–45 cm) compared to the deeper root zone (45–90 cm). Total root productivity did not vary significantly among sites and ranged from 407 to 643 g m-2 y-1. Root production in the shallow root zone accounted for 57–78% of total production. Root turnover rates ranged from 0.04 to 0.60 y-1 and consistently decreased as the root size class distribution increased from fine to coarse roots, indicating differences in root longevity. Fine root biomass was negatively correlated with soil P density and frequency of inundation, whereas fine root turnover decreased with increasing soil N:P ratios. Lower P availability in Taylor River basin relative to Shark River basin, along with higher regulator and hydroperiod stress, confirms our hypothesis that interactions of stress from resource limitation and long duration of hydroperiod account for higher fine root biomass along with lower fine root production and turnover. Because fine root production and organic matter accumulation are the primary processes controlling soil formation and accretion in scrub mangrove forests, root dynamics in the P-limited carbonate ecosystem of south Florida have a major controlling role as to how mangroves respond to future impacts of sealevel rise.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a −1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Iron, copper and lead distribution was evaluated in sediment cores from a disturbed mangrove area in Guanabara Bay: a core from a seaward site where mangrove vegetation was removed ~20 yr before sampling (MD); a core from an intermediate site with dead vegetation, apparently due to insect attack (MP), and a core from a landward site with living vegetation (MV). Metal concentrations showed increasing values seaward while organic matter content showed an inverse trend, displaying a negative correlation with metals. This unusual correlation indicates opposite sources, since metals come from the bay and the main OM origin is probably degraded mangrove vegetation. Plant cover loss seems to be a critical factor affecting metal accumulation, particularly due to changes in OM input.