1000 resultados para Mangrove soils


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to assess soil nutrient status and heavy metal content and their impact on the predominant soil bacterial communities of mangroves of the Mahanadi Delta. Mangrove soil of the Mahanadi Delta is slightly acidic and the levels of soil nutrients such as carbon, nitrogen, phosphorous and potash vary with season and site. The seasonal average concentrations (g/g) of various heavy metals were in the range: 14810-63370 (Fe), 2.8-32.6 (Cu), 13.4-55.7 (Ni), 1.8-7.9 (Cd), 16.6-54.7 (Pb), 24.4-132.5 (Zn) and 13.3-48.2 (Co). Among the different heavy metals analysed, Co, Cu and Cd were above their permissible limits, as prescribed by Indian Standards (Co=17g/g, Cu=30 g/g, Cd=3-6 g/g), indicating pollution in the mangrove soil. A viable plate count revealed the presence of different groups of bacteria in the mangrove soil, i.e. heterotrophs, free-living N-2 fixers, nitrifyers, denitrifyers, phosphate solubilisers, cellulose degraders and sulfur oxidisers. Principal component analysis performed using multivariate statistical methods showed a positive relationship between soil nutrients and microbial load. Whereas metal content such as Cu, Co and Ni showed a negative impact on some of the studied soil bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Five zones along a transect of 180 m were selected for study on the Island of Pai Matos (Sao Paulo, Brazil). Four of the zones are colonised by vascular plants (Spartina SP, Laguncularia LG, Avicennia AV and Rhizophora RH) and were denominated soils, and the other zone, which lacks vegetation, was denominated sediment (SD). The geochemical conditions differed significantly in soils and sediment and also at different depths. The soils were oxic (Eh > 350 mV) or suboxic (Eh: 350-100 mV) at the surface and anoxic (Eh < 100 mV) at depth, whereas in the sediment anoxic conditions prevailed at all depths, but with a lower concentration of sulphides in the pore water and pyrite in the solid fraction. Under these geochemical conditions Fe is retained in the soils, while the Mn tends to be mobilized and lost. The most abundant form of iron oxyhydroxide was lepidocrocite (mean concentration for all sites and depths, 45 +/- 19 mu mol g(-1)), followed by goethite (30 19 mu mol g(-1))and ferrihydrite (19 +/- 11 mu mol g(-1)),with significant differences among the mean concentrations. There was a significant decrease with depth in all the types of Fe oxyhydroxides measured, particularly the poorly crystalline forms. The pyrite fraction was an important component of the free Fe pool (non-silicate Fe) in all soils as well as in the sediment, especially below 20 cm depth (mean concentration for all sites and depths, 60 +/- 54 mu mol CI). Furthermore, the mean concentration of Fe-pyrite for all sites and depths was higher than that obtained for any of the three Fe oxyhydroxides measured. The Fe-AVS was a minor fraction, indicating that the high concentrations of dissolved Fe in the soils in the upper area of the transect result from the oxidation of Fe sulphides during low tide. Mossbauer spectroscopy also revealed that most of the Fe (III) was associated with silicates, in this case nontronite. The presence of crystals of pyrite associated with phyllosilicates in samples from the upper layer of the soils may indicate that pyritization of this form of Fe(III) is more rapid than usually reported for ocean bed sediments. The sequential extraction of Mn did not reveal any clearly dominant fraction, with the Mn-carbonate fraction being the most prevalent, followed by exchangeable Mn and oxides of Mn, whereas pyrite-Mn and Mn associated with crystalline Fe-oxides were present at significantly lower concentrations. The high concentration of dissolved Mn found in the soils in the lower part of the transect is consistent with the fact that the solubility is determined by the carbonate fraction. Unlike for Fe, in the soils in the higher zone, which are subject to intense drainage during low tide, there was loss of Mn, as reflected by the concentration of total Mn. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A total of sixteen bacterial species were isolated from mangrove soils of Karachi, Pakistan. Twelve of the isolates were gram positive while four were gram negative. All sixteen species showed resistance to high concentration of streptomycin, however, resistance to chloramphenicol and tetracycline was variable. The isolates tolerated up to 110‰ salinity and accumulated sodium form the media.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A semi-arid mangrove estuary system in the northeast Brazilian coast (Ceará state) was selected for this study to (i) evaluate the impact of shrimp farm nutrient-rich wastewater effluents on the soil geochemistry and organic carbon (OC) storage and (ii) estimate the total amount of OC stored in mangrove soils (0–40 cm). Wastewater-affected mangrove forests were referred to as WAM and undisturbed areas as Non-WAM. Redox conditions and OC content were statistically correlated (P < 0.05) with seasonality and type of land use (WAM vs. Non-WAM). Eh values were from anoxic to oxic conditions in the wet season (from − 5 to 68 mV in WAM and from < 40 to > 400 mV in Non-WAM soils) and significantly higher (from 66 to 411 mV) in the dry season (P < 0.01). OC contents (0–40 cm soil depth) were significantly higher (P < 0.01) in the wet season than the dry season, and higher in Non-WAM soils than in WAM soils (values of 8.1 and 6.7 kg m− 2 in the wet and dry seasons, respectively, for Non-WAM, and values of 3.8 and 2.9 kg m− 2 in the wet and dry seasons, respectively, for WAM soils; P < 0.01). Iron partitioning was significantly dependent (P < 0.05) on type of land use, with a smaller degree of pyritization and lower Fe-pyrite presence in WAM soils compared to Non-WAM soils. Basal respiration of soil sediments was significantly influenced (P < 0.01) by type of land use with highest CO2 flux rates measured in the WAM soils (mean values of 0.20 mg CO2 h− 1–g− 1 C vs. 0.04 mg CO2 h− 1–g− 1 C). The OC storage reduction in WAM soils was potentially caused (i) by an increase in microbial activity induced by loading of nutrient-rich effluents and (ii) by an increase of strong electron acceptors [e.g., NO3−] that promote a decrease in pyrite concentration and hence a reduction in soil OC burial. The current estimated OC stored in mangrove soils (0–40 cm) in the state of Ceará is approximately 1 million t.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia Agropecuária - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution of mangrove biomass and forest structure along Shark River estuary in the Florida Coastal Everglades (FCE) has been correlated with elevated total phosphorus concentration in soils thought to be associated with storm events. The passage of Hurricane Wilma across Shark River estuary in 2005 allowed us to quantify sediment deposition and nutrient inputs in FCE mangrove forests associated with this storm event and to evaluate whether these pulsing events are sufficient to regulate nutrient biogeochemistry in mangrove forests of south Florida. We sampled the spatial pattern of sediment deposits and their chemical properties in mangrove forests along FCE sites in December 2005 and October 2006. The thickness (0.5 to 4.5 cm) of hurricane sediment deposits decreased with distance inland at each site. Bulk density, organic matter content, total nitrogen (N) and phosphorus (P) concentrations, and inorganic and organic P pools of hurricane sediment deposits differed from surface (0–10 cm) mangrove soils at each site. Vertical accretion resulting from this hurricane event was eight to 17 times greater than the annual accretion rate (0.30± 0.03 cm year−1) averaged over the last 50 years. Total P inputs from storm-derived sediments were equivalent to twice the average surface soil nutrient P density (0.19 mg cm−3). In contrast, total N inputs contributed 0.8 times the average soil nutrient N density (2.8 mg cm−3). Allochthonous mineral inputs from Hurricane Wilma represent a significant source of sediment to soil vertical accretion rates and nutrient resources in mangroves of southwestern Everglades. The gradient in total P deposition to mangrove soils from west to east direction across the FCE associated with this storm event is particularly significant to forest development due to the P-limited condition of this carbonate ecosystem. This source of P may be an important adaptation of mangrove forests in the Caribbean region to projected impacts of sea-level rise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acid sulfate soils (ASS) are one of the stressor factors that cause many mangrove restoration projects to fail. Achieving successful rehabilitation in an ASS affected area requires an understanding of the geochemical conditions that influence the establishment and growth of mangrove seedlings. This study evaluated the effect of tidal inundation on geochemical conditions on sub layer to better understand their impacts on the density, establishment, and growth of mangrove seedlings. This study also examined the geochemical conditions under which mangrove seedlings can establish naturally, and/or be replanted in abandoned aquaculture ponds. The study area was in an area of abandoned aquaculture ponds situated in the Mare District, adjacent to Bone Bay, South Sulawesi, Indonesia.The pH, pHfox, redox potential, organic content, water soluble sulfate, SKCl, SPOS, and grain size of the soil from the sediment core at + 10 - 15 cm depth near roots were measured using. Pyrite analysis were conducted for the top and sub sediments. The density, establishment, and the relative root growth of Rhizophoraceae were also determined. Free tidal inundation at abandoned pond sites improved the sediment quality. The high density, establishment, and growth of mangrove seedlings were characterized by freely drained areas with a higher pH (field and oxidisable), lower organic content, and high proportion of silt/clay. Higher density and growth also correlated to reduced environments. Sulfur species did not influence the density, establishment, and growth of the seedlings directly. The supply of propagules from the mangrove stands, or access from good waterways were also important for seedlings to establish naturally.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acid sulfate soils (ASS) is a stress factor that is responsible for the failure of some mangrove restoration projects, including abandoned aquaculture ponds converted from mangrove ecosystems. Through experimental and field studies, this research provides a better understanding of the biogeochemistry of ASS disturbance and the response of mangrove seedlings (Rhizophoraceae) under high metal levels and acidic conditions. This study found that mangrove restorations under ASS disturbance can work but with lower numbers of survived seedlings. To prevent toxicity under high levels of metal, seedlings retained metals in their roots and sparingly distributed them into aerial parts with low mobility. The presence of high levels of potential acidity parameters would allow pyrite to oxidise, thus increasing metal levels and acidity, which in turn affected the survival and growth of the seedlings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the 1970s, acid sulfate soils (ASS) distributed within about 720 ha of predominantly mangrove and salt pan wetlands at East Trinity in north Queensland were developed after the area was isolated from tidal flooding by a surrounding seawall and the installation of tidal gates on major drainage creeks. Following drainage and oxidation of these estuarine acidic sediments, resultant acid leachate caused considerable, ongoing environmental problems including regular fish kills. A rehabilitation program covering much of these former tidal wetlands commenced in 2000 using a lime-assisted tidal exchange management regime. Changes in the established populations of estuarine fish and crustaceans were monitored in the two creeks (Firewood and Hills Creeks) where tidal flows were reinstated. In Firewood Creek between 2001 and 2005, there was a progressive increase in fish species richness, diversity and abundance. The penaeid prawn Fenneropenaeus merguiensis was a major component of the cast net catches in the lower sections of both Firewood and Hills Creeks but its relative abundance decreased upstream of the tidal gates on the seawall. Well established stocks of predominantly juvenile, male Scylla serrata resident upstream of the tidal gates indicated suitable habitats with acceptable water and sediment quality and adequate availability of food. The regular fish kills that occurred prior to the management regime abated and, overall, the implementation of the rehabilitation program is yielding positive benefits for the local fisheries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the stimulus of the very high international market value of penaeid shrimp, new pond areas for shrimp farming are rapidly being added in Bangladesh. Unfortunately, this expansion is occurring with the loss of some natural mangrove forests and with soils and sediments that are far from ideal for aquaculture. In this study, two representative shrimp farming areas were surveyed and pH, in profile depth, was recorded. It was found that the shrimp farming areas of the Chakaria Sundarban are more acidic than those of the Khulna-Satkhira region due to the acid sulfate soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The article presents the impact of mangrove conversion on fisheries and on coastal areas. The mangrove areas which serve as nursery grounds for important species of fish and crustaceans are also rich feeding ground for many species from various trophic levels. Thus, the destruction of mangroves could affect the availability of fry and broodstock and, consequently, aquaculture production and fisheries. While in coastal areas, the destruction of mangroves increased the risk of coastal erosion from storm surges and winds, accelerates the erosion of riverbanks, exposes acid sulfate soils, leading to poor production and mass mortality of stocks, and affects the freshwater supply through salt intrusion upstream among others.