938 resultados para Manganês peroxidase
Resumo:
Ceriporiopsis subvermispora is a selective fungus in the wood delignification and the most promising in biopulping. Through the lipid peroxidation initiated by manganese peroxidase (MnP), free radicals can be generated, which can act in the degradation of lignin nonphenolic structures. This work evaluated the prooxidant activity (based in lipid peroxidation) of enzymatic extracts from wood biodegradation by this fungus in cultures containing exogenous calcium, oxalic acid or soybean oil. It was observed that MnP significant activity is required to promote lipid peroxidation and wood delignification. Positive correlation between prooxidant activity x MnP was observed up to 300 IU kg-1 of wood.
Resumo:
A proposta deste trabalho foi estudar o potencial das linhagens fúngicas, consideradas potenciais degradadoras dos herbicidas quinclorac e propanil, isoladas tanto da cultura de arroz como em sedimentos de áreas produtoras de arroz irrigado, para produção de enzimas ligninolíticas. O complexo enzimático degradador da lignina é descrito como responsável pela degradação de vários poluentes orgânicos Um método simples e rápido para a seleção de fungos com atividade ligninolítica é a utilização de corantes poliméricos. Assim, oito linhagens fúngicas foram cultivadas em meio de cultura líquido King?s B suplementado com 0,05% de Remazol Brilliant Blue R (RBBR). As mesmas linhagens foram também cultivadas em meio de cultura líquido contendo farelo de trigo como substrato, para a determinação das atividades enzimáticas lignina peroxidase, manganês peroxidase e lacases. Os resultados demonstraram padrões diferenciados quanto a produção de enzimas ligninolíticas entre as linhagens, sendo que as maiores atividades enzimáticas estiveram relacionadas à produção de lignina. O nível máximo detectado foi de 6,079U L-1 (linhagem P11SA4F), seguida de 3,332U L- 1 (linhagem P2SA6F). Das oito linhagens apenas duas (P3SA1F e P11SA2F) apresentaram descoloração do RBBR, sugerindo a sua possível aplicabilidade em estudos de biodegradação e biorremediação em áreas contaminadas com propanil e quinclorac.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The production of ethanol and sugar from sugarcane juice generate as byproduct, the bagasse. Currently, the bagasse, an industrial lignocellulosic biomass, can be used for production of second-generation ethanol, since when it is submitted to hydrolytic processes generates fermentable sugars. The objective of this study was to produce fungal enzymes capable of hydrolyzing this lignocellulosic biomass to generate glucose. For this, we used the mushroom species Lentinula edodes, Pleurotus ostreatus, Pleurotus eryngii, and Pycnoporus sanguineus as potential sources of laccase, manganese peroxidase and lignin peroxidase enzymes, capable of hydrolyzing the crushed sugarcane. The hydrolysis process was performed with the highest enzymatic activities observed from laccase in L. edodes (39.23 U-mL after 25 day incubation), P. ostreatus (2.5 U U-mL after 27 day incubation), P. sanguineus (80 U-mL after 27 days of incubation) and P. eryngii (16.45 U-mL 15 days incubation). MnP and LiP showed no significant results. The enzymatic hydrolysis of sugarcane bagasse in natura (32,17% hemicellulose, cellulose 52,45% and 10,62% lignin) and bagasse hydrolyzate with 7,0% H2SO4 (0,20% hemicellulose, 68,82% to 25,33% cellulose and lignin) were evaluated for each enzymatic obtained. Compared to others, the enzymes produced by P. sanguineus incubated in sugarcane bagasse showed better efficiency resulting in glucose with an average content of 0,14 g-L. Although the levels of glucose determined in this work were low in relation to the literature, it can be stated that the laccase, manganese peroxidase and lignin peroxidase enzymes demonstrated good hydrolytic potential, especially those produced by the fungus P. sanguineus.
Resumo:
Lignocelulose é o componente mais abundante do meio ambiente e recurso orgânico renovável no solo. Alguns fungos filamentosos têm desenvolvido a habilidade de degradar e utilizar celulose, hemicelulose e lignina como fonte de energia. O objetivo deste trabalho foi analisar o efeito de três fontes de nitrogênio (sulfato de amônio, nitrato de potássio e farelo de soja) na atividade enzimática de Lentinula edodes EF 50 utilizando como substrato serragem de E. benthamii. Foi aplicado um planejamento experimental de mistura com três repetições no ponto central constituído de sete tratamentos (T) de iguais concentrações em nitrogênio de sulfato de amônia, nitrato de potássio e farinha de soja cozida. Foram determinadas a atividade enzimática da avicelase, carboximetilcelulase, β-glicosidase, xilanases e manganês peroxidase. Foram avaliados o teor de umidade, pH, atividade de água (aw) e análise qualitativa do crescimento micelial em 8 tempos de cultivo. Os resultados mostraram efeito negativo na produção das enzimas nos tratamentos com máxima concentração de sulfato de amônia e nitrato de potássio. Os tratamentos com farinha de soja cozida expressaram maiores atividades enzimáticas, nos tempos de 3, 6 e 9 dias de cultivo exceto na atividade do manganês peroxidase. A maior produção foi observada no tratamento com sulfato de amônia e farinha de soja cozida (83.86 UI.L?1) em 20 dias de cultivo.
Resumo:
Phenols are well known noxious compounds, which are often found in various water sources. A novel analytical method has been researched and developed based on the properties of hemin–graphene hybrid nanosheets (H–GNs). These nanosheets were synthesized using a wet-chemical method, and they have peroxidase-like activity. Also, in the presence of H2O2, the nanosheets are efficient catalysts for the oxidation of the substrate, 4-aminoantipine (4-AP), and the phenols. The products of such an oxidation reaction are the colored quinone-imines (benzodiazepines). Importantly, these products enabled the differentiation of the three common phenols – pyrocatechol, resorcin and hydroquinone, with the use of a novel, spectroscopic method, which was developed for the simultaneous determination of the above three analytes. This spectroscopic method produced linear calibrations for the pyrocatechol (0.4–4.0 mg L−1), resorcin (0.2–2.0 mg L−1) and hydroquinone (0.8–8.0 mg L−1) analytes. In addition, kinetic and spectral data, obtained from the formation of the colored benzodiazepines, were used to establish multi-variate calibrations for the prediction of the three phenol analytes found in various kinds of water; partial least squares (PLS), principal component regression (PCR) and artificial neural network (ANN) models were used and the PLS model performed best.
Resumo:
Aerobic respiration is a fundamental energy-generating process; however, there is cost associated with living in an oxygen-rich environment, because partially reduced oxygen species can damage cellular components. Organisms evolved enzymes that alleviate this damage and protect the intracellular milieu, most notably thiol peroxidases, which are abundant and conserved enzymes that mediate hydrogen peroxide signaling and act as the first line of defense against oxidants in nearly all living organisms. Deletion of all eight thiol peroxidase genes in yeast (∆8 strain) is not lethal, but results in slow growth and a high mutation rate. Here we characterized mechanisms that allow yeast cells to survive under conditions of thiol peroxidase deficiency. Two independent ∆8 strains increased mitochondrial content, altered mitochondrial distribution, and became dependent on respiration for growth but they were not hypersensitive to H2O2. In addition, both strains independently acquired a second copy of chromosome XI and increased expression of genes encoded by it. Survival of ∆8 cells was dependent on mitochondrial cytochrome-c peroxidase (CCP1) and UTH1, present on chromosome XI. Coexpression of these genes in ∆8 cells led to the elimination of the extra copy of chromosome XI and improved cell growth, whereas deletion of either gene was lethal. Thus, thiol peroxidase deficiency requires dosage compensation of CCP1 and UTH1 via chromosome XI aneuploidy, wherein these proteins support hydroperoxide removal with the reducing equivalents generated by the electron transport chain. To our knowledge, this is the first evidence of adaptive aneuploidy counteracting oxidative stress.
Resumo:
The self-assembly of layered molybdenum disulfide–graphene (MoS2–Gr) and horseradish peroxidase (HRP) by electrostatic attraction into a novel hybrid nanomaterial (HRP–MoS2–Gr) is reported. The properties of the MoS2–Gr were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). UV–vis and Fourier transform infrared spectroscopy (FT-IR) indicate that the native structure of the HRP is maintained after the assembly, implying good biocompatibility of MoS2–Gr nanocomposite. Furthermore, the HRP–MoS2–Gr composite is utilized as a biosensor, which displays electrocatalytic activity to hydrogen peroxide (H2O2) with high sensitivity (679.7 μA mM−1 cm−2), wide linear range (0.2 μM–1.103 mM), low detection limit (0.049 μM), and fast amperometric response. In addition, the biosensor also exhibits strong anti-interference ability, satisfactory stability and reproducibility. These desirable electrochemical properties are attributed to the good biocompatibility and electron transport efficiency of the MoS2–Gr composite, as well as the high loading of HRP. Therefore, this biosensor is potentially suitable for H2O2 analysis in environmental, pharmaceutical, food or industrial applications.
Resumo:
In this paper, inhibition of the glutathione peroxidase activity of two synthetic organoselenium compounds, bis[2-(N,N-dimethylamino)benzyl]diselenide (5) and bis[2-(N,N-dimethylamino)benzyl]selenide (9), by gold(I) thioglucose (1), chloro(triethylphosphine)gold(I), chloro(trimethylphosphine)gold(I), and chloro(triphenylphosphine)gold(I) is described. The inhibition is found to be competitive with respect to a peroxide (H2O2) substrate and noncompetitive with respect to a thiol (PhSH) cosubstrate. The diselenide 5 reacts with PhSH to produce the corresponding selenol (6), which upon treatment with 1 equiv of gold(I) chlorides produces the corresponding gold selenolate complexes 11−13. However, the addition of 1 equiv of selenol 6 to complexes 11−13 leads to the formation of bis-selenolate complex 14 by ligand displacement reactions involving the elimination of phosphine ligands. The phosphine ligands eliminated from these reactions are further converted to the corresponding phosphine oxides (R3PO) and selenides (R3PSe). In addition to the replacement of the phosphine ligand by selenol 6, an interchange between two different phosphine ligands is also observed. For example, the reaction of complex 11 having a trimethylphosphine ligand with triphenylphosphine produces complex 13 by phosphine interchange reactions via the formation of intermediates 15 and 16. The reactivity of selenol 6 toward gold(I) phosphines is found to be similar to that of selenocysteine.
Resumo:
Broad-spectrum antibiotics with heterocyclic side chains strongly inhibit peroxidase-catalyzed iodination in the presence of metallo--lactamase. This suggests that antibiotic resistance due to hydrolysis of the -lactam ring in antibiotics would have negative effects on thyroid activity.
Resumo:
A series of secondary and tertiary amide-substituted diselenides were synthesized and studied for their GPx-like antioxidant activities using H2O2 Cum-OOH, and tBuOOH as substrates and PhSH as thiol co-substrate.The effect of substitution at the free -NH group of the amide moiety in the sec-amide-based diselenides on GPx activity was analyzed by detailed experimental and theoretical methods. It is observed that substitution at the free -NH group significantly enhances the GPx-like activities of the sec-amide-based diselenides, mainly by reducing the Se center dot center dot center dot O nonbonded interactions. The reduction in strength of the Se center dot center dot center dot O interaction upon introduction of N,N-dialkyl substituents not only prevents the undesired thiol exchange reactions, but also reduces the stability of selenenyl sulfide intermediates. This leads to a facile disproportionation of the selenenyl sulfide to the corresponding diselenide, which enhances the catalytic activity. The mechanistic investigations indicate that the reactivity of diselenides having sec-or tert-amide moieties with PhSH is extremely slow; indicating that the first step of the catalytic cycle involves the reaction between the diselenides and peroxide to produce the corresponding selenenic and seleninic acids.