973 resultados para Manchester OWL Syntax
Resumo:
La produzione ontologica è un processo fondamentale per la crescita del Web Semantico in quanto le ontologie rappresentano i vocabolari formali con cui strutturare il Web of Data. Le notazioni grafiche ontologiche costituiscono il mezzo ideale per progettare ontologie OWL sensate e ben strutturate. Tuttavia la successiva fase di generazione ontologica richiede all'utente un fastidioso cambio sia di prospettiva sia di strumentazione. Questa tesi propone dunque GraMOS, Graffoo to Manchester OWL Syntax, un motore di trasformazione da modelli Graffoo a ontologie formali in grado di fondere le due fasi di progettazione e generazione ontologica.
Resumo:
The COntext INterchange (COIN) strategy is an approach to solving the problem of interoperability of semantically heterogeneous data sources through context mediation. COIN has used its own notation and syntax for representing ontologies. More recently, the OWL Web Ontology Language is becoming established as the W3C recommended ontology language. We propose the use of the COIN strategy to solve context disparity and ontology interoperability problems in the emerging Semantic Web – both at the ontology level and at the data level. In conjunction with this, we propose a version of the COIN ontology model that uses OWL and the emerging rules interchange language, RuleML.
Resumo:
A variety of factors influence prey selection by predators. Because Barn Owls (Tyto alba) and Burrowing Owls (Athene cunicularia) differ in size and foraging tactics, we expected differential predation on small mammal prey. We hypothesized that the Barn Owl, all active predator, would prey on smaller and younger individuals than the Burrowing Owl, a sit-and-wait predator. We used pellet analyses to evaluate selection of small mammals by the two owls in relation to prey), species, age, and size at the Ecological Station of Itirapina, state of Sao Paulo, in southeastern Brazil. Small mammals constituted most of the prey individuals and biomass in the diet of Barn Owls. Although Burrowing Owls consumed a wider range of taxa, small mammals represented one-third of all biomass consumed. With respect. to small mammals, Barn Owls foraged selectively relative to prey species, size, and age. Burrowing Owls foraged opportunistically relative to prey species, but selectively relative to prey size and age. Barn Owls selected smaller and younger (juvenile and subadult) individuals of the delicate vesper mouse (Calomys tener) and Burrowing Owls preyed more oil larger and older (subadult only) individuals. morphology and behavior of both prey and predators may explain this differential predation. Our data suggest that the active predator feeds oil smaller and younger prey, and the sit-and-wait predator took relatively larger and older prey.
Resumo:
This paper describes the emergence of new functional items in the Mauritian Creole noun phrase, following the collapse of the French determiner system when superstrate and substrate came into contact. The aim of the paper is to show how the new language strived to express the universal semantic contrasts of (in)definiteness and singular vs. plural. The process of grammaticalization of new functional items in the determiner system was accompanied by changes in the syntax from French to creole. An analysis within Chomsky’s Minimalist framework (1995, 2000, 2001) suggests that these changes were driven by the need to map semantic features onto the syntax.
Resumo:
Objective To report the biometric values and ultrasonographic aspects of the normal eye of the Striped owl (Rhinoptynx clamator). Sample population Twenty-seven healthy, free-living, adult Striped owls from the Ecological Park of Tiete Veterinary Ambulatory (Sao Paulo, Brazil). Procedures Both eyes of all owls underwent B-mode ultrasonographic examination and biometry was performed for lens axial length (WL), depth of the anterior (AC) and vitreous (VC) chambers, axial length of the globe (LB) and the pecten oculi (LP) of both eyes, using a 12 MHz probe. The owls were manually restrained without sedation and the eyes were topically anesthetized. Results Biometric and statistical findings were as follows: in the left eye, the means and standard deviations were: LB = 23.76 +/- 0.92 mm, WL = 7.79 +/- 0.27 mm, AC = 4.27 +/- 0.47 mm, VC = 11.36 +/- 0.29 mm and LP = 5.69 +/- 0.50 mm; in the right eye, the values were: LB = 24.25 +/- 0.79 mm, WL = 8.03 +/- 0.40 mm, AC = 4.56 +/- 0.52 mm, VC = 11.40 +/- 0.25 mm, and LP = 5.68 +/- 0.41 mm. No significant differences were found between left and right eyes measurements of LB, WL, AC, VC, and LP dimensions. Conclusions Ocular ultrasound aspects and biometric values of the Striped owl are reported. The study`s results provide means for various ocular measurements. The ultrasound is an easy and safe exam to be performed in the Striped owl`s eyes.
Resumo:
In the present study we addressed the issue of somatosensory representation and plasticity in a nonmammalian species, the barn owl. Multiunit mapping techniques were used to examine the representation of the specialized receptor surface of the claw in the anterior Wulst. We found dual somatotopic mirror image representations of the skin surface of the contralateral claw. In addition, we examined both representations 2 weeks after denervation of the distal skin surface of a single digit. In both representations, the denervated digital representation became responsive to stimulation of the adjacent, mutually functional, digit. The mutability and multiple representations indicates that the Wulst provides the owl with sensory processing capabilities analogous to those in mammals.
Resumo:
Recent studies have revealed regional variation in the density and distribution of inhibitory neurons in different cortical areas, which are thought to reflect area-specific specializations in cortical circuitry. However, there are as yet few standardized quantitative data regarding how the inhibitory circuitry in prefrontal cortex (PFC), which is thought to be involved in executive functions such as cognition, emotion and decision making, compares to that in other cortical areas. Here we used immunohistochemical techniques to determine the density and distribution of parvalbumin (PV)-, calbindin (CB)-, and calretinin (CR)-immunoreactive (ir) neurons and axon terminals in the dorsolateral and orbital PFC of the owl monkey (Aotus trivirgatus), and compared them directly with data obtained using the same techniques in 11 different visual, somatosensory and motor areas. We found marked differences in the density of PV-ir, CB-ir, and CR-ir interneurons in several cortical areas. One hundred and twenty eight of all 234 possible between-area pairwise comparisons were significantly different. The density of specific subpopulations of these cells also varied among cortical areas, as did the density of axon terminals. Comparison of PFC with other cortical areas revealed that 40 of all 66 possible statistical comparisons of the density of PV-ir, CB-ir, and CR-ir cells were significantly different. We also found evidence for heterogeneity in the pattern of labeling of PV-ir, CB-ir, and CR-ir cells and axon terminals between the dorsolateral and orbital subdivisions of PFC. These data are likely to reflect basic differences in interneuron circuitry, which are likely to influence inhibitory function in the cortex. Copyright (C) 2003 S. Karger AG, Basel.
Resumo:
Recent studies have revealed marked variation in pyramidal cell structure in the visual cortex of macaque and marmoset monkeys. In particular, there is a systematic increase in the size of, and number of spines in, the arbours of pyramidal cells with progression through occipitotemporal (OT) visual areas. In the present study we extend the basis for comparison by investigating pyramidal cell structure in visual areas of the nocturnal owl monkey. As in the diurnal macaque and marmoset monkeys, pyramidal cells became progressively larger and more spinous with anterior progression through OT visual areas. These data suggest that: 1. the trend for more complex pyramidal cells with anterior progression through OT visual areas is a fundamental organizational principle in primate cortex; 2. areal specialization of the pyramidal cell phenotype provides an anatomical substrate for the reconstruction of the visual scene in OT areas; 3. evolutionary specialization of different aspects of visual processing may determine the extent of interareal variation in the pyramidal cell phenotype in different species; and 4. pyramidal cell structure is not necessarily related to brain size. Crown Copyright (C) 2003 Published by Elsevier Science Ltd on behalf of IBRO. All rights reserved.
Resumo:
Recent studies have revealed marked regional variation in pyramidal cell morphology in primate cortex. In particular, pyramidal cells in human and macaque prefrontal cortex (PFC) are considerably more spinous than those in other cortical regions. PFC pyramidal cells in the New World marmoset monkey, however, are less spinous than those in man and macaques. Taken together, these data suggest that the pyramidal cell has become more branched and more spinous during the evolution of PFC in only some primate lineages. This specialization may be of fundamental importance in determining the cognitive styles of the different species. However, these data are preliminary, with only one New World and two Old World species having been studied. Moreover, the marmoset data were obtained from different cases. In the present study we investigated PFC pyramidal cells in another New World monkey, the owl monkey, to extend the basis for comparison. As in the New World marmoset monkey, prefrontal pyramidal cells in owl monkeys have relatively few spines. These species differences appear to reflect variation in the extent to which PFC circuitry has become specialized during evolution. Highly complex pyramidal cells in PFC appear not to have been a feature of a common prosimian ancestor, but have evolved with the dramatic expansion of PFC in some anthropoid lineages.
Resumo:
The branching structure of neurones is thought to influence patterns of connectivity and how inputs are integrated within the arbor. Recent studies have revealed a remarkable degree of variation in the branching structure of pyramidal cells in the cerebral cortex of diurnal primates, suggesting regional specialization in neuronal function. Such specialization in pyramidal cell structure may be important for various aspects of visual function, such as object recognition and color processing. To better understand the functional role of regional variation in the pyramidal cell phenotype in visual processing, we determined the complexity of the dendritic branching pattern of pyramidal cells in visual cortex of the nocturnal New World owl monkey. We used the fractal dilation method to quantify the branching structure of pyramidal cells in the primary visual area (V1), the second visual area (V2) and the caudal and rostral subdivisions of inferotemporal cortex (ITc and ITr, respectively), which are often associated with color processing. We found that, as in diurnal monkeys, there was a trend for cells of increasing fractal dimension with progression through these cortical areas. The increasing complexity paralleled a trend for increasing symmetry. That we found a similar trend in both diurnal and nocturnal monkeys suggests that it was a feature of a common anthropoid ancestor.
Resumo:
The content of a Learning Object is frequently characterized by metadata from several standards, such as LOM, SCORM and QTI. Specialized domains require new application profiles that further complicate the task of editing the metadata of learning object since their data models are not supported by existing authoring tools. To cope with this problem we designed a metadata editor supporting multiple metadata languages, each with its own data model. It is assumed that the supported languages have an XML binding and we use RDF to create a common metadata representation, independent from the syntax of each metadata languages. The combined data model supported by the editor is defined as an ontology. Thus, the process of extending the editor to support a new metadata language is twofold: firstly, the conversion from the XML binding of the metadata language to RDF and vice-versa; secondly, the extension of the ontology to cover the new metadata model. In this paper we describe the general architecture of the editor, we explain how a typical metadata language for learning objects is represented as an ontology, and how this formalization captures all the data required to generate the graphical user interface of the editor.
Resumo:
WWW is a huge, open, heterogeneous system, however its contents data is mainly human oriented. The Semantic Web needs to assure that data is readable and “understandable” to intelligent software agents, though the use of explicit and formal semantics. Ontologies constitute a privileged artifact for capturing the semantic of the WWW data. Temporal and spatial dimensions are transversal to the generality of knowledge domains and therefore are fundamental for the reasoning process of software agents. Representing temporal/spatial evolution of concepts and their relations in OWL (W3C standard for ontologies) it is not straightforward. Although proposed several strategies to tackle this problem but there is still no formal and standard approach. This work main goal consists of development of methods/tools to support the engineering of temporal and spatial aspects in intelligent systems through the use of OWL ontologies. An existing method for ontology engineering, Fonte was used as framework for the development of this work. As main contributions of this work Fonte was re-engineered in order to: i) support the spatial dimension; ii) work with OWL Ontologies; iii) and support the application of Ontology Design Patterns. Finally, the capabilities of the proposed approach were demonstrated by engineering time and space in a demo ontology about football.