989 resultados para Mammals - Ecology - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"This invaluable companion to The Mammals of Australia is intended to be taken out into the field and used in conjunction with the more comprehensive volume. Genuinely practical in the outdoors, the book includes accounts of 389 species and newly developed, comprehensive identification keys. The Field Companion is introduced by a Mammal Distribution Matrix, which provides a classified checklist of all mammals in Australia (including those extinguished since European settlement) and the distribution of extant species in each state and territory. Species accounts provide initial differentiation, and include notes on identification, size, abundance, habitat and federal list/status, photograph and distribution map, as well as key references, which provide quick access to all relevant state identification keys in the Field Companion and to the longer entry in The Mammals of Australia. The authors have developed separate keys, illustrated with detailed drawings and maps, for the six states and the Northern Territory, to simplify the identification process and allow the reader to confidently separate all mammal species, no matter how subtle the differences. With the addition of these identification keys, this book becomes more than a field guide - although it is intended primarily to be used outdoors - and allows the user to finish identification based on more obscure characteristics, which is an advantage for some hard-to-identify species groups."--Libraries Australia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soil-borne plant pathogen Phytophthora cinnamomi occurs in most Australian states. It is pathogenic to many Australian species, particularly the Proteaceae, Fabaceae, Dillineaceae and Epacridaceae. In Western Australia, c. 2000 of the 9000 endemic plant species are directly affected by the disease. The epidemic of plant deaths caused by P. cinnamomi is recognised as one of 11 Key Threatening Processes to the Australian Environment, and is now also acknowledged as a potential threat fauna in a range of communities. The implications of landscape modification due to the effects of P. cinnamomi dieback prompted our research, designed to measure the distribution and abundance of small mammals in disease-affected ecosystems. This study was in the Jarrah (Eucalyptus marginata) forests in the Darling Range, Western Australia and measured the distribution and abundance of one small mammal species, the Mardo (Antechinus flavipes) by Elliott trapping in forests with (1) high, (2) mixed and (3) no evidence of Phytophthora dieback. Trap success was highest in sites with no effect of Phytophthora (7.3 animals per 100 trap nights), whereas the lowest trap success was recorded at the high impact sites (0.67 animals per 100 trap night). There was a significant difference in trap success of Mardos in Elliott trapping over 1800 trap nights (x2= 23.19, d.f = 5, p < 0.001). An examination of the distribution of individuals and sexes suggests that Phytophthora-affected sites act as sinks for Mardos, while source areas are healthy, unaffected Jarrah forest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small mammals displayed contrasting patterns of occurence in forest fragments. Population studies revealed that key processes responsible for survival in habitat patches include demographic flexibility and the movement of individuals between patches. Combining pattern- and process-based approaches provides a more complete understanding of fauna in modified landscapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigated the ecological impacts of powerline corridor management on small mammals. The study found that powerline corridors provide habitat for native small mammal species, contrary to common belief that Australian powerline corridors are poor in native species. It is important however, that ecological sensitive management regimes are implemented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The scaling of metabolic rates to body size is widely considered to be of great biological and ecological importance, and much attention has been devoted to determining its theoretical and empirical value. Most debate centers on whether the underlying power law describing metabolic rates is 2/3 (as predicted by scaling of surface area/volume relationships) or 3/4 ("Kleiber's law"). Although recent evidence suggests that empirically derived exponents vary among clades with radically different metabolic strategies, such as ectotherms and endotherms, models, such as the metabolic theory of ecology, depend on the assumption that there is at least a predominant, if not universal, metabolic scaling exponent. Most analyses claimed to support the predictions of general models, however, failed to control for phylogeny. We used phylogenetic generalized least-squares models to estimate allometric slopes for both basal metabolic rate (BMR) and field metabolic rate (FMR) in mammals. Metabolic rate scaling conformed to no single theoretical prediction, but varied significantly among phylogenetic lineages. In some lineages we found a 3/4 exponent, in others a 2/3 exponent, and in yet others exponents differed significantly from both theoretical values. Analysis of the phylogenetic signal in the data indicated that the assumptions of neither species-level analysis nor independent contrasts were met. Analyses that assumed no phylogenetic signal in the data (species-level analysis) or a strong phylogenetic signal (independent contrasts), therefore, returned estimates of allometric slopes that were erroneous in 30% and 50% of cases, respectively. Hence, quantitative estimation of the phylogenetic signal is essential for determining scaling exponents. The lack of evidence for a predominant scaling exponent in these analyses suggests that general models of metabolic scaling, and macro-ecological theories that depend on them, have little explanatory power.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Anthropogenic degradation of the world's ecosystems is leading to a widespread and accelerating loss of biodiversity. However, not all species respond equally to existing threats, raising the question: what makes a species more vulnerable to extinction? We propose that higher intraspecific variability may reduce the risk of extinction, as different individuals and populations within a species may respond differently to occurring threats. Supporting this prediction, our results show that mammalian species with more variable adult body masses, litter sizes, sexual maturity ages and population densities are less vulnerable to extinction. Our findings reveal the role of local variation among populations, particularly of large mammals, as a buffering mechanism against extinction, and emphasise the importance of considering trait variation in comparative analyses and conservation management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Australia's box-ironbark forests and woodlands once covered about 14 per cent of the State of Victoria on the riverine plains and foothills of the Great Dividing Range. But approximately 83 per cent of the total original habitat has been destroyed and what remains of this significant ecosystem is now highly fragmented and vulnerable to further degradation. Moreover, only 14 per cent of the area remaining is on public land. A 10 year campaign on the part of the environmental movement eventually succeeded in forcing the State government to conduct an independent inquiry into this ecosystem and make recommendations on future management. This paper outlines the innovative public participation process adopted by the Victorian State government and the outcomes of the inquiry. A subsequent compensation package for commercial operations disadvantaged by the proclamation of a series of new national parks is also discussed, as are the shortcomings of a process that can have little or no impact on what happens on private land.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This is the first ecological text that deals comprehensively with ecological principles and practice in an Australian context, with wholly Australian examples. There are four sections, dealing with the basics of climate soils and energy flows, major communities, the discipline itself, and major issues.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Box-Ironbark forests occur on the inland hills of the Great Dividing Range in Australia, from western Victoria to southern Queensland. These dry, open forests are characteristically dominated by Eucalyptus species such as Red Ironbark E. tricarpa, Mugga Ironbark E. sideroxylon and Grey Box E. microcarpa. Within these forests, several Eucalyptus species are a major source of nectar for the blossom-feeding birds and marsupials that form a distinctive component of the fauna. In Victoria, approximately 83% of the original pre - European forests of the Box-Ironbark region have been cleared, and the remaining fragmented forests have been heavily exploited for gold and timber. This exploitation has lead to a change in the structure of these forests, from one dominated by large 80-100 cm diameter, widely -spaced trees to mostly small (≥40 cm DBH), more densely - spaced trees. This thesis examines the flowering ecology of seven Eucalyptus species within a Box-Ironbark community. These species are characteristic of Victorian Box-Ironbark forests; River Red Gum E. camaldulensis, Yellow Gum E. leucoxylon, Red Stringybark E. macrorhyncha, Yellow Box E. melliodora, Grey Box E. microcarpa, Red Box E. polyanthemos and Red Ironbark E. tricarpa. Specifically, the topics examined in this thesis are: (1) the floral character traits of species, and the extent to which these traits can be associated with syndromes of bird or insect pollination; (2) the timing, frequency, duration, intensity, and synchrony of flowering of populations and individual trees; (3) the factors that may explain variation in flowering patterns of individual trees through examination of the relationships between flowering and tree-specific factors of individually marked trees; (4) the influence of tree size on the flowering patterns of individually marked trees, and (5) the spatial and temporal distribution of the floral resources of a dominant species, E. tricarpa. The results are discussed in relation to the evolutionary processes that may have lead to the flowering patterns, and the likely effects of these flowering patterns on blossom-feeding fauna of the Box-Ironbark region. Flowering observations were made for approximately 100 individually marked trees for each species (a total of 754 trees). The flower cover of each tree was assessed at a mean interval of 22 (+ 0.6) days for three years; 1997, 1998 and 1999. The seven species of eucalypt each had characteristic flowering seasons, the timing of which was similar each year. In particular, the timing of peak flowering intensity was consistent between years. Other spatial and temporal aspects of flowering patterns for each species, including the percentage of trees that flowered, frequency of flowering, intensity of flowering and duration of flowering, displayed significant variation between years, between forest stands (sites) and between individual trees within sites. All seven species displayed similar trends in flowering phenology over the study, such that 1997 was a relatively 'poor' flowering year, 1998 a 'good' year and 1999 an 'average' year in this study area. The floral character traits and flowering seasons of the seven Eucalyptus species suggest that each species has traits that can be broadly associated with particular pollinator types. Differences between species in floral traits were most apparent between 'summer' and 'winter' flowering species. Winter - flowering species displayed pollination syndromes associated with bird pollination and summer -flowering species displayed syndromes more associated with insect pollination. Winter - flowering E. tricarpa and E. leucoxylon flowers, for example, were significantly larger, and contained significantly greater volumes of nectar, than those of the summer flowering species, such as E. camaldulensis and E. melliodom. An examination of environmental and tree-specific factors was undertaken to investigate relationships between flowering patterns of individually marked trees of E. microcarpa and E. tricarpa and a range of measures that may influence the observed patterns. A positive association with tree-size was the most consistent explanatory variable for variation between trees in the frequency and intensity of flowering. Competition from near-neighbours, tree health and the number of shrubs within the canopy area were also explanatory variables. The relationship between tree size and flowering phenology was further examined by using the marked trees of all seven species, selected to represent five size-classes. Larger trees (≥40 cm DBH) flowered more frequently, more intensely, and for a greater duration than smaller trees. Larger trees provide more abundant floral resources than smaller trees because they have more flowers per unit area of canopy, they have larger canopies in which more flowers can be supported, and they provide a greater abundance of floral resources over the duration of the flowering season. Heterogeneity in the distribution of floral resources was further highlighted by the study of flowering patterns of E. tricarpa at several spatial and temporal scales. A total of approximately 5,500 trees of different size classes were sampled for flower cover along transects in major forest blocks at each of five sample dates. The abundance of flowers varied between forest blocks, between transects and among tree size - classes. Nectar volumes in flowers of E. tricarpa were sampled. The volume of nectar varied significantly among flowers, between trees, and between forest stands. Mean nectar volume per flower was similar on each sample date. The study of large numbers of individual trees for each of seven species was useful in obtaining quantitative data on flowering patterns of species' populations and individual trees. The timing of flowering for a species is likely to be a result of evolutionary selective forces tempered by environmental conditions. The seven species' populations showed a similar pattern in the frequency and intensity of flowering between years (e.g. 1998 was a 'good' year for most species) suggesting that there is some underlying environmental influence acting on these aspects of flowering. For individual trees, the timing of flowering may be influenced by tree-specific factors that affect the ability of each tree to access soil moisture and nutrients. In turn, local weather patterns, edaphic and biotic associations are likely to influence the available soil moisture. The relationships between the timing of flowering and environmental conditions are likely to be complex. There was no evidence that competition for pollinators has a strong selective influence on the timing of flowering. However, as there is year-round flowering in this community, particular types of pollinators may be differentiated along a temporal gradient (e.g. insects in summer, birds in winter). This type of differentiation may have resulted in the co-evolution of floral traits and pollinator types, with flowers displaying adaptations that match the morphologies and energy requirements of the most abundant pollinators in any particular season. Spatial variation in flowering patterns was evident at several levels. This is likely to occur because of variation in climate, weather patterns, soil types, degrees of disturbance and biotic associations, which vary across the Box-Ironbark region. There was no consistency among sites between years in flowering patterns suggesting that factors affecting flowering at this level are complex. Blossom-feeding animals are confronted with a highly spatially and temporally patchy resource. This patchiness has been increased with human exploitation of these forests leading to a much greater abundance of small trees and fewer large trees. Blossom-feeding birds are likely to respond to this variation in different ways, depending upon diet-breadth, mobility and morphological and behavioural characteristics. Future conservation of the blossom-feeding fauna of Box-Ironbark forests would benefit from the retention of a greater number of large trees, the protection and enhancement of existing remnants, and revegetation with key species, such as E. leucoxylon, E. microcarpa and E. tricarpa. The selective clearing of summer flowering species, which occur on the more fertile areas, may have negatively affected the year-round abundance and distribution of floral resources. The unpredictability of the spatial distribution of flowering patches within the region means that all remnants are likely to be important foraging areas in some years.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research is a case study of Dungalah, a river Europeans call the Murray which describes and accounts for the past, present and future experiences of Indigenous and non-Indigenous communities in their protection, use and management of the Dungalah and its surrounding land. It provides a snapshot of the experiences of the researcher, her family, friencds and the Yorta Yorta people, living with Dungalah.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bird life occurring along the Murray River was distinctly different from surrounding much drier vegetation. It was found that the presence of the Murray River, with it's associated moist Red Gum forests, provide a corridor whereby birds typically of cool climates can expand their range and occur in an arid landscape.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis investigated the ecology of the threatened sooty owl, which was used to improve understanding of recent small mammal declines and how a top-order predator adapted to changes in ecosystem condition following European settlement. This knowledge will help improve biodiversity conservation and management of forested ecosystems in south-eastern Australia.