984 resultados para Mammalian Sex Determination


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the ATRX gene on the human X chromosome cause X-linked α-thalassemia and mental retardation. XY patients with deletions or mutations in this gene display varying degrees of sex reversal, implicating ATRX in the development of the human testis. To explore further the role of ATRX in mammalian sex differentiation, the homologous gene was cloned and characterized in a marsupial. Surprisingly, active homologues of ATRX were detected on the marsupial Y as well as the X chromosome. The Y-borne copy (ATRY) displays testis-specific expression. This, as well as the sex reversal of ATRX patients, suggests that ATRY is involved in testis development in marsupials and may represent an ancestral testis-determining mechanism that predated the evolution of SRY as the primary mammalian male sex-determining gene. There is no evidence for a Y-borne ATRX homologue in mouse or human, implying that this gene has been lost in eutherians and its role supplanted by the evolution of SRY from SOX3 as the dominant determiner of male differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known of the mechanisms whereby the mammalian indifferent gonad develops into a testis or ovary. In XY individuals, Sry, the mammalian testis-determining gene, is expressed in the pre-Sertoli cells, which then differentiate into Sertoli cells. Other cell types, which include the germ cells, the steroidogenic cells and the connective tissue cells, must then be instructed to develop in a male-specific manner. Although some genes involved in sex-determination and differentiation processes have been identified, we know little of how they interact and cooperate to orchestrate the development of a testis or ovary. We have initiated an expression-screening program designed to identify additional genes, known or novel, which play a role in these processes. This approach is based on our belief that many of the genes we seek will be expressed in a sex-specific manner during the period of sex-determination and differentiation. Most of the genes identified previously are transcription factors and so we aim, in particular, to find genes involved in cell-to-cell communication, signal transduction, and transcriptional regulation, downstream of the differentiation of Sertoli cells. We have used a suppression subtractive-hybridization method to generate male- and female-enriched probes and libraries. Clones are validated as being sex-specific in their expression patterns by array screening and in situ hybridization. Here we report on our progress to date and the general applicability of the approach for studies in other systems. J. Exp. Zool. 290:517-522, 2001. (C) 2001 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During mammalian sexual development, the SOX9 transcription factor up-regulates expression of the gene encoding anti-Mullerian hormone (AMH), but in chickens, Sox9 gene expression reportedly occurs after the onset of Amh expression. Here, we examined expression of the related gene Sox8 in chicken embryonic gonads during the sex-determining period. We found that cSox8 is expressed at similar levels in both sexes at embryonic day 6 and 7, and only at the anterior tip of the gonad, suggesting that SOX8 is not responsible for the sex-specific increase in cAmh gene expression at these stages. We also found that several other chicken Sox genes (cSox3, cSox4 and cSox11) are expressed in embryonic gonads, but at similar levels in both sexes. Our data suggest that the molecular mechanisms involved in the regulation of Amh genes of mouse and chicken are not conserved, despite similar patterns of Amh expression in both species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eggs from the Heron Island, Great Barrier Reef, nesting population of green turtles (Chelonia mydas) were incubated at all-male-determining (26 degreesC) and all-female-determining (30 degreesC) temperatures. Oxygen consumption and embryonic growth were monitored throughout incubation, and hatchling masses and body dimensions were measured from both temperatures. Eggs hatched after 79 and 53 days incubation at 26 degreesC and 30 degreesC respectively. Oxygen consumption at both temperatures increased to a peak several days before hatching, a pattern typical of turtle embryos, and the rate of oxygen was higher at 30 degreesC than 26 degreesC. The total amount of energy consumed during incubation, and hatchling dimensions, were similar at both temperatures, but hatchlings from 26 degreesC had larger mass, larger yolk-free mass and smaller residual yolks than hatchlings from 30 degreesC. Because of the difference in mass of hatchlings, hatchlings from 30 degreesC had a higher production cost.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parasites of the genus Schistosoma were among the first metazoans to develop separate sexes, which is chromosomally determined in the fertilized egg. Despite the occurrence of specific sex chromosomes, the females of most Schistosomatidae species do not complete their somatic development and reach no sexual maturity without the presence of males. Indeed, the most controversial and at the same time most fascinating aspect about the sexual development of Schistosoma females lies on discover the nature of the stimulus produced by males that triggers and controls this process. Although the nature of the stimulus (physical or chemical) is a source of controversy, there is agreement that mating is a necessary requirement for maturation to occur and for migration of the female to a definitive final site of residence in the vascular system of the vertebrate host. It has also been proposed that the stimulus is not species-specific and, in some cases, not even genus-specific. Despite a vast literature on the subject, the process or processes underlying the meeting of males and females in the circulatory system have not been determined and as yet no consensus exists about the nature of the stimulus that triggers and maintains female development. In the studies about their role, Schistosoma males have been considered, at times pejoratively, the brother, the muscles or even the liver of females. Indeed, it still remains to be determined whether the stimulus responsible for female maturation involves the transfer of hormones, nutrients, neuromediators, mere tactile stimulation or a combination of chemotactic and thigmotactic factors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Giant of Amazon basin, pirarucu, Arapaima gigas, is the largest scaled freshwater fish in the world. pirarucu cultivation has recently started, driven by the decline in natural populations and high market value. Currently, there are no reliable methods for sexual differentiation in this species other than direct examination of gonads, which requires dissection of specimens. A non-lethal and less invasive method for sexual identification is highly desirable in order to properly group broodstock for mating and offspring production. We utilized laparoscopic examination in anesthetized pirarucu to differentiate between male and female individuals. This method allowed for the observation and differentiation of the reproductive organs within an individual. Our results suggest that laparoscopy is an efficient method for sex differentiation in pirarucu causing minimal stress to the fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study has been carried out at the central region of the Araguaia river on the border between the states of Goiás and Mato Grosso in the Brazilian Amazon Basin from September to December 2000. We recorded temperature fluctuation, clutch-size, incubation period and hatching success rate and hatchlings' sex ratio of five nests of Podocnemis expansa (Schweigger, 1812). Despite the relatively small sample size we infer that: a) nests of P. expansa in the central Araguaia river have a lower incubation temperature than nests located further south; however, incubation period is shorter, hatching success rate is lower and clutch-size is larger; b) Podocnemis expansa may present a female-male-female (FMF) pattern of temperature sex-determination (TSD); c) thermosensitive period of sex determination apparently occur at the last third of the incubation period; and, d) future studies should prioritize the relationship between temperature variation (i.e., range and cycle) and embryos development, survivorship and sex determination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT : Gene duplication is a fundamental source of raw material for the origin of genetic novelty. It has been assumed for a long time that DNA-based gene duplication was the only source of new genes. Recently however, RNA-based gene duplication (retroposition) was shown in multiple organisms to contribute significantly to their genetic diversity. This mechanism produces intronless gene copies (retrocopies) that are inserted in random genomic position, independent of the position of the parental source genes. In human, mouse and fruit fly, it was demonstrated that the X-linked genes spawned an excess of functional retroposed gene copies (retrogenes). In human and mouse, the X chromosome also recruited an excess of retrogenes. Here we further characterized these interesting biases related to the X chromosome in mammals. Firstly, we have confirmed presence of the aforementioned biases in dog and opossum genome. Then based on the expression profile of retrogenes during various spermatogenetic stages, we have provided solid evidence that meiotic sex chromosome inactivation (MSCI) is responsible for an excess of retrogenes stemming from the X chromosome. Moreover, we showed that the X-linked genes started to export an excess of retrogenes just after the split of eutherian and marsupial mammalian lineages. This suggests that MSCI has originated around this time as well. More fundamentally, as MSCI reflects the spread of recombination barrier between the X and Y chromosomes during their evolution, our observation allowed us to re-estimate the age of mammalian sex chromosomes. Previous estimates suggested that they emerged in the common ancestor of all mammals (before the split of monotreme lineage); whereas, here we showed that they originated around the split of marsupial and eutherian lineages, after the divergence of monotremes. Thus, the therian (marsupial and eutherian) sex chromosomes are younger than previously thought. Thereafter, we have characterized the bias related to the recruitment of genes to the X chromosome. Sexually antagonistic forces are most likely driving this pattern. Using our limited retrogenes expression data, it is difficult to determine the exact nature of these forces but some conclusions have been made. Lastly, we looked at the history of this biased recruitment: it commenced around the split of marsupial and eutherian lineages (akin to the biased export of genes out of the X). In fact, the sexually antagonistic forces are predicted to appear just around that time as well. Thereby, the history of the recruitment of genes to the X, provides an indirect evidence that these forces are responsible for this bias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Separate sexes have evolved on numerous independent occasions from hermaphroditic ancestors in flowering plants. The mechanisms of sex determination is known for only a handful of such species, but, in those that have been investigated, it usually involves alleles segregating at a single locus, sometimes on heteromorphic sex chromosomes. In the genus Mercurialis, transitions between combined (hermaphroditism) and separate sexes (dioecy or androdioecy, where males co-occur with hermaphrodites rather than females) have occurred more than once in association with hybridisation and shifts in ploidy. Previous work has pointed to an unusual 3-locus system of sex determination in dioecious populations. Here, we use crosses and genotyping for a sex-linked marker to reject this model: sex in diploid dioecious M. annua is determined at a single locus with a dominant male-determining allele (an XY system). We also crossed individuals among lineages of Mercurialis that differ in their ploidy and sexual system to ascertain the extent to which the same sex-determination system has been conserved following genome duplication, hybridisation and transitions between dioecy and hermaphroditism. Our results indicate that the male-determining element is fully capable of determining gender in the progeny of hybrids between different lineages. Specifically, males crossed with females or hermaphrodites always generate 1:1 male:female or male:hermaphrodite sex ratios, respectively, regardless of the ploidy levels involved (diploid, tetraploid or hexaploid). Our results throw further light on the genetics of the remarkable variation in sexual systems in the genus Mercurialis. They also illustrate the almost identical expression of sex-determining alleles in terms of sexual phenotypes across multiple divergent backgrounds, including those that have lost separate sexes altogether.