908 resultados para Maltodextrin supplementation
Resumo:
Prebiotics, probiotics and synbiotics are dietary ingredients with the potential to influence health and mucosal and systemic immune function by altering the composition of the gut microbiota. In the present study, a candidate prebiotic (xylo-oligosaccharide, XOS, 8 g/d), probiotic (Bifidobacterium animalis subsp. lactis Bi-07, 109 colony-forming units (CFU)/d) or synbiotic (8 g XOS+109 CFU Bi-07/d) was given to healthy adults (25–65 years) for 21 d. The aim was to identify the effect of the supplements on bowel habits, self-reported mood, composition of the gut microbiota, blood lipid concentrations and immune function. XOS supplementation increased mean bowel movements per d (P= 0·009), but did not alter the symptoms of bloating, abdominal pain or flatulence or the incidence of any reported adverse events compared with maltodextrin supplementation. XOS supplementation significantly increased participant-reported vitality (P= 0·003) and happiness (P= 0·034). Lowest reported use of analgesics was observed during the XOS+Bi-07 supplementation period (P= 0·004). XOS supplementation significantly increased faecal bifidobacterial counts (P= 0·008) and fasting plasma HDL concentrations (P= 0·005). Bi-07 supplementation significantly increased faecal B. lactis content (P= 0·007), lowered lipopolysaccharide-stimulated IL-4 secretion in whole-blood cultures (P= 0·035) and salivary IgA content (P= 0·040) and increased IL-6 secretion (P= 0·009). XOS supplementation resulted in lower expression of CD16/56 on natural killer T cells (P= 0·027) and lower IL-10 secretion (P= 0·049), while XOS and Bi-07 supplementation reduced the expression of CD19 on B cells (XOS × Bi-07, P= 0·009). The present study demonstrates that XOS induce bifidogenesis, improve aspects of the plasma lipid profile and modulate the markers of immune function in healthy adults. The provision of XOS+Bi-07 as a synbiotic may confer further benefits due to the discrete effects of Bi-07 on the gut microbiota and markers of immune function.
Resumo:
Background: Artistic Gymnastics is a sport where athletes are frequently fatigued. One element that might influence this aspect is carbohydrate, an important energy substrate for the muscles and the CNS. Our goal was to investigate the influence of fatigue over artistic gymnastics athlete's performance and the effects of a carbohydrate supplementation on their performance. Methods: We evaluated 15 athletes divided in 2 groups (control and fatigue) from 12 to 14 years old in two different experimental days. On the first day (water day), they did 5 sets of exercises on the balance beam (experimental protocol) ingesting only water, CG (control group) warmed up before the experimental protocol and FG (fatigue group) did a fatigue circuit, warm up exercises and then the experimental protocol. On the second day (carbohydrate day), we used the same protocol but CG ingested a sugar free flavored juice and FG ingested a 20% concentration maltodextrin solution before the protocol on the balance beam. Results: We observed a greater number of falls from the balance beam from the FG on the first day (5.40 ± 1.14 FG vs 3.33 ± 1.37 CG; p = 0.024) and a decrease in the number of falls on the second day (2.29 ± 1.25 FG water day vs 5.40 ± 1.14 FG carbohydrate day; p = 0.0013). Carbohydrate solution was able to supply muscle demands and improve the athlete's focus showed by the reduced number of falls. © 2013 Batatinha et al.; licensee BioMed Central Ltd.
Resumo:
BACKGROUND: A high dietary protein intake has been shown to blunt the deposition of intrahepatic lipids in high-fat- and high-carbohydrate-fed rodents and humans. OBJECTIVE: The aim of this study was to evaluate the effect of essential amino acid supplementation on the increase in hepatic fat content induced by a high-fructose diet in healthy subjects. DESIGN: Nine healthy male volunteers were studied on 3 occasions in a randomized, crossover design after 6 d of dietary intervention. Dietary conditions consisted of a weight-maintenance balanced diet (control) or the same balanced diet supplemented with 3 g fructose · kg(-1) · d(-1) and 6.77 g of a mixture of 5 essential amino acids 3 times/d (leucine, isoleucine, valine, lysine, and threonine) (HFrAA) or with 3 g fructose · kg(-1) · d(-1) and a maltodextrin placebo 3 times/d (HFr); there was a washout period of 4 to 10 wk between each condition. For each condition, the intrahepatocellular lipid (IHCL) concentration, VLDL-triglyceride concentration, and VLDL-[(13)C]palmitate production were measured after oral loading with [(13)C]fructose. RESULTS: HFr increased the IHCL content (1.27 ± 0.31 compared with 2.74 ± 0.55 vol %; P < 0.05) and VLDL-triglyceride (0.55 ± 0.06 compared with 1.40 ± 0.15 mmol/L; P < 0.05). HFr also enhanced VLDL-[(13)C]palmitate production. HFrAA significantly decreased IHCL compared with HFr (to 2.30 ± 0.43 vol%; P < 0.05) but did not change VLDL-triglyceride concentrations or VLDL-[(13)C]palmitate production. CONCLUSIONS: Supplementation with essential amino acids blunts the fructose-induced increase in IHCL but not hypertriglyceridemia. This is not because of inhibition of VLDL-[(13)C]palmitate production. This trial was registered at www.clinicaltrials.gov as NCT01119989.
Resumo:
The protective effect of short-term creatine supplementation (CrS) upon markers of strenuous contractile activity-induced damage in human and rat skeletal muscles was investigated. Eight Ironman triathletes were randomized into the placebo (Pl; n = 4) and creatine-supplemented (CrS; n = 4) groups. Five days prior to the Ironman competition, the CrS group received creatine monohydrate (20 g day(-1)) plus maltodextrin (50 g) divided in two equal doses. The Pl group received maltodextrin (50 g day(-1)) only. The effect of CrS (5 g day(-1)/kg body weight for 5 days) was also evaluated in a protocol of strenuous contractile activity induced by electrical stimulation in rats. Blood samples were collected before and 36 and 60 h after the competition and were used to determine plasma activities of creatine kinase (CK), lactate dehydrogenase (LDH), aldolase (ALD), glutamic oxaloacetic acid transaminase (GOT), glutamic pyruvic acid transaminase (GPT), and C-reactive protein (CRP) level. In rats, plasma activities of CK and LDH, muscle vascular permeability (MVP) using Evans blue dye, muscle force and fatigue were evaluated. Activities of CK, ALD, LDH, GOT, GTP, and levels of CRP were increased in the Pl group after the competition as compared to basal values. CrS decreased plasma activities of CK, LDH, and ALD, and prevented the rise of GOT and GPT plasma activities. In rats, CrS delayed the fatigue, preserved the force, and prevented the rise of LDH and CK plasma activities and MVP in the gastrocnemius muscle. CrS presented a protective effect on muscle injury induced by strenuous contractile activities.
Resumo:
This study examined the effects of long-term creatine supplementation combined with resistance training (RT) on the one-repetition maximum (1RM) strength, motor functional performance (e.g., 30-s chair stand, arm curl, and getting up from lying on the floor tests) and body composition (e.g., fat-free mass, muscle mass, and % body fat using DEXA scans) in older women. Eighteen healthy women (64.9 ± 5.0 years) were randomly assigned in a double-blind fashion to either a creatine (CR, N = 9) or placebo (PL, N = 9) group. Both groups underwent a 12-week RT program (3 days week-1), consuming an equivalent amount of either creatine (5.0 g day-1) or placebo (maltodextrin). After 12 week, the CR group experienced a greater (P < 0.05) increase (Δ%) in training volume (+164.2), and 1RM bench press (+5.1), knee extension (+3.9) and biceps curl (+8.8) performance than the PL group. Furthermore, CR group gained significantly more fat-free mass (+3.2) and muscle mass (+2.8) and were more efficient in performing submaximal-strength functional tests than the PL group. No changes (P > 0.05) in body mass or % body fat were observed from pre- to post-test in either group. These results indicate that long-term creatine supplementation combined with RT improves the ability to perform submaximal-strength functional tasks and promotes a greater increase in maximal strength, fat-free mass and muscle mass in older women. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Objective: The aim of this study was to evaluate the effect of carbohydrate or glutamine supplementation, or a combination of the two, on the immune system and inflammatory parameters after exercise in simulated hypoxic conditions at 4500 m.Methods: Nine men underwent three sessions of exercise at 70% VO2(peak) until exhaustion as follows: 1) hypoxia with a placebo; 2) hypoxia with 8% maltodextrin (200 mL/20 min) during exercise and for 2 h after; and 3) hypoxia after 6 d of glutamine supplementation (20 g/d) and supplementation with 8% maltodextrin (200 mL/20 min) during exercise and for 2 h after. All procedures were randomized and double blind. Blood was collected at rest, immediately before exercise, after the completion of exercise, and 2 h after recovery. Glutamine, cortisol, cytokines, glucose, heat shock protein-70, and erythropoietin were measured in serum, and the cytokine production from lymphocytes was measured.Results: Erythropoietin and interleukin (IL)-6 increased after exercise in the hypoxia group compared with baseline. IL-6 was higher in the hypoxia group than pre-exercise after exercise and after 2 h recovery. Cortisol did not change, whereas glucose was elevated post-exercise in the three groups compared with baseline and pre-exercise. Glutamine increased in the hypoxia + carbohydrate + glutamine group after exercise compared with baseline. Heat shock protein-70 increased post-exercise compared with baseline and pre-exercise and after recovery compared with pre-exercise, in the hypoxia carbohydrate group. No difference was observed in IL-2 and IL-6 production from lymphocytes. IL-4 was reduced in the supplemented groups.Conclusion: Carbohydrate or glutamine supplementation shifts the T helper (Th)1/Th2 balance toward Th1 responses after exercise at a simulated altitude of 4500 m. The nutritional strategies increased in IL-6, suggesting an important anti-inflammatory effect. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The objective was to determine the effects of carbohydrate (CHO) supplementation on exercise-induced hormone responses and post-training intramyocellular lipid stores (IMCL). Twenty-four elite male athletes (28.0 +/- 1.2 years) were randomized to receive CHO (maltodextrin solution) or zero energy placebo solution (control group). The high-intensity running protocol consisted of 10 x 800 m at 100% of the best 3000-m speed (Vm3 km) and 2 x 1000 m maximal bouts in the morning and a submaximal 10-km continuous easy running in the afternoon of day 9. IMCL concentrations were assessed by H-1-MRS before (-day 9) and after training (day 9) in soleus (SO) and tibialis anterior (TA) muscles. Blood hormones were also measured before, during, and post-exercise. The percent change (Delta%) in TA-IMCL was higher in the CHO group (47.9 +/- 24.5 IMCL/Cr) than in the control group (-1.7 +/- 13.1, respectively) (P=.04). Insulin concentrations were higher in the CHO group post-intermittent running compared to control (P=.02). Circulating levels of free fatty acids and GH were lower in the CHO group (P>.01). The decline in performance in the 2nd 1000-m bout was also attenuated in this group compared to control (P<.001 and P=.0035, respectively). The hormonal milieu (higher insulin and lower GH levels) in the CHO group, together with unchanged free fatty acid levels, probably contributed to the increased IMCL stores. This greater energy storage capacity may have improved post-exercise recovery and thus prevented performance deterioration. (C) 2012 Elsevier Inc. All rights reserved.
Carbohydrate supplementation delays DNA damage in elite runners during intensive microcycle training
Resumo:
The aim of this study was to evaluate the effect of carbohydrate supplementation on free plasma DNA and conventional markers of training and tissue damage in long-distance runners undergoing an overload training program. Twenty-four male runners were randomly assigned to two groups (CHO group and control group). The participants were submitted to an overload training program (days 1-8), followed by a high-intensity intermittent running protocol (10 x 800 m) on day 9. The runners received maltodextrin solution (CHO group) or zero energy placebo solution as the control equivalent before, during, and after this protocol. After 8 days of intensive training, baseline LDH levels remained constant in the CHO group (before: 449.1 +/- 18.2, after: 474.3 +/- 22.8 U/L) and increased in the control group (from 413.5 +/- 23.0 to 501.8 +/- 24.1 U/L, p < 0.05). On day 9, LDH concentrations were lower in the CHO group (509.2 +/- 23.1 U/L) than in the control group (643.3 +/- 32.9 U/L, p < 0.01) post-intermittent running. Carbohydrate ingestion attenuated the increase of free plasma DNA post-intermittent running (48,240.3 +/- 5,431.8 alleles/mL) when compared to the control group (73,751.8 +/- 11,546.6 alleles/mL, p < 0.01). Leukocyte counts were lower in the CHO group than in the control group post-intermittent running (9.1 +/- 0.1 vs. 12.2 +/- 0.7 cells/mu L; p < 0.01) and at 80 min of recovery (10.6 +/- 0.1 vs. 13.9 +/- 1.1 cells/mu L; p < 0.01). Cortisol levels were positively correlated with free plasma DNA, leukocytes, and LDH (all r > 0.4 and p < 0.001). The results showed that ingestion of a carbohydrate beverage resulted in less DNA damage and attenuated the acute post-exercise inflammation response, providing better recovery during intense training.
Resumo:
Introduction: Prebiotics positively affect gut microbiota composition, thus improving gut function. These properties may be useful for the treatment of constipation. Objectives: This study assessed the tolerance and effectiveness of a prebiotic inulin/partially hydrolyzed guar gum mixture (I-PHGG) for the treatment of constipation in females, as well as its influence on the composition of intestinal microbiota and production of short chain fatty acids. Methods: Our study enrolled 60 constipated female health worker volunteers. Participants reported less than 3 bowel movements per week. Volunteers were randomized to treatment with prebiotic or placebo. Treatment consisted of 3 weeks supplementation with 15 g/d I-PHGG (fiber group) or maltodextrin (placebo group). Abdominal discomfort, flatulence, stool consistency, and bowel movements were evaluated by a recorded daily questionnaire and a weekly interview. Changes in fecal bacterial population and short chain fatty acids were assessed by real-time PCR and gas chromatography, respectively. Results: There was an increased frequency of weekly bowel movements and patient satisfaction in both the fiber and placebo groups with no significant differences. Total Clostridium sp significantly decreased in the fiber group (p = 0.046) and increased in the placebo group (p = 0.047). There were no changes in fecal short chain fatty acid profile. Conclusions: Consumption of I-PHGG produced clinical results comparable to placebo in constipated females, but had additional protective effects on gut rnicrobiota by decreasing the amount of pathological bacteria of the Clostridium genera.
Resumo:
Pancreatic β-cells are highly sensitive to suboptimal or excess nutrients, as occurs in protein-malnutrition and obesity. Taurine (Tau) improves insulin secretion in response to nutrients and depolarizing agents. Here, we assessed the expression and function of Cav and KATP channels in islets from malnourished mice fed on a high-fat diet (HFD) and supplemented with Tau. Weaned mice received a normal (C) or a low-protein diet (R) for 6 weeks. Half of each group were fed a HFD for 8 weeks without (CH, RH) or with 5% Tau since weaning (CHT, RHT). Isolated islets from R mice showed lower insulin release with glucose and depolarizing stimuli. In CH islets, insulin secretion was increased and this was associated with enhanced KATP inhibition and Cav activity. RH islets secreted less insulin at high K(+) concentration and showed enhanced KATP activity. Tau supplementation normalized K(+)-induced secretion and enhanced glucose-induced Ca(2+) influx in RHT islets. R islets presented lower Ca(2+) influx in response to tolbutamide, and higher protein content and activity of the Kir6.2 subunit of the KATP. Tau increased the protein content of the α1.2 subunit of the Cav channels and the SNARE proteins SNAP-25 and Synt-1 in CHT islets, whereas in RHT, Kir6.2 and Synt-1 proteins were increased. In conclusion, impaired islet function in R islets is related to higher content and activity of the KATP channels. Tau treatment enhanced RHT islet secretory capacity by improving the protein expression and inhibition of the KATP channels and enhancing Synt-1 islet content.
Resumo:
Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats. Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness. Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was associated with restoration of vascular redox homeostasis and improvement of NO bioavailability.
Resumo:
Endurance exercise training as well as leucine supplementation modulates glucose homeostasis and protein turnover in mammals. Here, we analyze whether leucine supplementation alters the effects of endurance exercise on these parameters in healthy mice. Mice were distributed into sedentary (C) and exercise (T) groups. The exercise group performed a 12-week swimming protocol. Half of the C and T mice, designated as the CL and TL groups, were supplemented with leucine (1.5 % dissolved in the drinking water) throughout the experiment. As well known, endurance exercise training reduced body weight and the retroperitoneal fat pad, increased soleus mass, increased VO2max, decreased muscle proteolysis, and ameliorated peripheral insulin sensitivity. Leucine supplementation had no effect on any of these parameters and worsened glucose tolerance in both CL and TL mice. In the soleus muscle of the T group, AS-160(Thr-642) (AKT substrate of 160 kDa) and AMPK(Thr-172) (AMP-Activated Protein Kinase) phosphorylation was increased by exercise in both basal and insulin-stimulated conditions, but it was reduced in TL mice with insulin stimulation compared with the T group. Akt phosphorylation was not affected by exercise but was lower in the CL group compared with the other groups. Leucine supplementation increased mTOR phosphorylation at basal conditions, whereas exercise reduced it in the presence of insulin, despite no alterations in protein synthesis. In trained groups, the total FoxO3a protein content and the mRNA for the specific isoforms E2 and E3 ligases were reduced. In conclusion, leucine supplementation did not potentiate the effects of endurance training on protein turnover, and it also reduced its positive effects on glucose homeostasis.
Resumo:
The exacerbation of the oxidative stress and of the polyol pathway which impair damage myenteric plexus are metabolic characteristics of diabetes. The ascorbic acid (AA) is an antioxidant and an aldose reductase inhibitor, which may act as neuroprotector. The effects of AA supplementation on the density and cellular body profile area (CP) of myenteric neurons in STZ-induced diabetes in rats were assessed. Four groups with five animals each were formed: normoglycemic (C); diabetic (D); AA-treated diabetic (DS) and AA-treated normoglycemic (CS). Dosagen of 50mg of AA were given, three times a week, for each animal (group DS and CS). Ninety days later and after euthanasia, the ileum was collected and processed for the NADPH-diaphorase technique. There were no differences (P>0.05) in the neuronal density among the groups. The CP area was lower (P<0.05) in the DS and CS groups, with a higher incidence of neurons with a CP area exceeding 200µm² for groups C and D. The AA had no influence on the neuronal density in the ileum but had a neuroprotective effect, preventing the increase in the CP area and allowing a higher number of neurons with a CP area with less than 200µm².
Resumo:
The purpose of this study was to evaluate whether Branched-chain amino acids (BCAAs) supplementation had any beneficial effects on growth and metabolic parameters of young rats submitted to chronic aerobic exercise. Thirty-two young rats (age: 21-d) were randomly assigned to four experimental groups (n = 8): Supplemented Trained (Sup/Ex), Control Trained (Ctrl/Ex), Supplemented Sedentary (Sup/Sed) and Control Sedentary (Ctrl/Sed). The trained groups underwent a five-week swimming protocol and received supplemented (45 mg BCAA/body weight/day) or control ration. Trained animals presented a lower body length and a higher cartilage weight, regardless of supplementation. Physical activity was responsible for a substantial reduction in proteoglycan synthesis in cartilage tissue, and BCAA supplementation was able to attenuate this reduction and also to improve glycogen stores in the liver, although no major differences were found in body growth associated to this supplementation.
Resumo:
Background: The effects of creatine (CR) supplementation on glycogen content are still debatable. Thus, due to the current lack of clarity, we investigated the effects of CR supplementation on muscle glycogen content after high intensity intermittent exercise in rats. Methods: First, the animals were submitted to a high intensity intermittent maximal swimming exercise protocol to ensure that CR-supplementation was able to delay fatigue ( experiment 1). Then, the CR-mediated glycogen sparing effect was examined using a high intensity intermittent sub-maximal exercise test ( fixed number of bouts; six bouts of 30-second duration interspersed by two-minute rest interval) ( experiment 2). For both experiments, male Wistar rats were given either CR supplementation or placebo (Pl) for 5 days. Results: As expected, CR-supplemented animals were able to exercise for a significant higher number of bouts than Pl. Experiment 2 revealed a higher gastrocnemius glycogen content for the CR vs. the Pl group (33.59%). Additionally, CR animals presented lower blood lactate concentrations throughout the intermittent exercise bouts compared to Pl. No difference was found between groups in soleus glycogen content. Conclusion: The major finding of this study is that CR supplementation was able to spare muscle glycogen during a high intensity intermittent exercise in rats.