928 resultados para Malignant Cerebral Glioma
Resumo:
The prognosis for patients with the high-grade cerebral glioma glioblastoma multiforme is poor. The median survival for primary tumors is < 12 months, with most recurring at the site of the original tumor, indicating that a more aggressive local therapy is required to eradicate the unresectable "nests" of tumor cells invading into adjacent brain. Two adjuvant therapies with the potential to destroy these cells are porphyrin-sensitized photodynamic therapy (PDT) and boron-sensitized boron neutron capture therapy (BNCT). The ability of a boronated porphyrin, 2,4-(alpha, beta-dihydroxyethyl) deuteroporphyrin IX tetrakiscarborane carboxylate ester (BOPP), to act as a photosensitizing agent was investigated in vitro with the C6 rat glioma cell line and in vivo with C6 cells grown as an intracerebral tumor after implantation into Wistar rats. These studies determined the doses of BOPP and light required to achieve maximal cell kill in vitro and selective tumor kill in vivo. The data show that BOPP is more dose effective in vivo by a factor of 10 than the current clinically used photosensitizer hematoporphyrin derivative and suggest that BOPP may have potential as a dual PDT/BNCT sensitizer.
Resumo:
Goals of work: The diagnosis and treatment of a brain tumour may result in long-term changes in a patient's functional and social abilities and/or in a greatly reduced life span. A qualitative investigation was conducted to examine the supportive care needs of patients with brain tumour and their carers. Materials and methods: Overall, 18 patients and 18 carers participated in focus groups or telephone interviews, following a structured interview guide to elicit supportive care services of importance to these patients and carers. Main results: Six major themes were identified using the framework analysis method, including needs for information and coping with uncertainty, practical support, support to return to pretreatment responsibilities or prepare for long-term care, support to deal with social isolation and organize respite care, support to overcome stigma/discrimination and support to discuss potentially reduced life expectancy. Conclusions: Five recommendations to improve service delivery include: assignment of a dedicated member of the care team or case manager; proactive dissemination of information, education and psychosocial support; access to objective assessment of neuropsychological functioning; facilitating easier access to welfare payments; and services facilitating communication about difficult illness-related topics. Provision of services along these recommendations could improve supportive care of brain tumour patients and their carers.
Resumo:
Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.
Resumo:
Object. Insulin-like growth factor binding proteins (IGEBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma. Methods. The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models. Results. IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001-1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008-1.042) were significant predictors of shorter survival in patients with glioblastoma. Conclusions. IGFBP-3 influences tumor cell proliferation, migration, and invasion and regulates STAT-1 expression in malignant glioma cells. STAT-1 is overexpressed in human glioblastoma tissues and emerges as a novel prognostic biomarker.
Resumo:
BACKGROUND: Malignant glioma is a rare cancer with poor survival. The influence of diet and antioxidant intake on glioma survival is not well understood. The current study examines the association between antioxidant intake and survival after glioma diagnosis. METHODS: Adult patients diagnosed with malignant glioma during 1991-1994 and 1997-2001 were enrolled in a population-based study. Diagnosis was confirmed by review of pathology specimens. A modified food-frequency questionnaire interview was completed by each glioma patient or a designated proxy. Intake of each food item was converted to grams consumed/day. From this nutrient database, 16 antioxidants, calcium, a total antioxidant index and 3 macronutrients were available for survival analysis. Cox regression estimated mortality hazard ratios associated with each nutrient and the antioxidant index adjusting for potential confounders. Nutrient values were categorized into tertiles. Models were stratified by histology (Grades II, III, and IV) and conducted for all (including proxy) subjects and for a subset of self-reported subjects. RESULTS: Geometric mean values for 11 fat-soluble and 6 water-soluble individual antioxidants, antioxidant index and 3 macronutrients were virtually the same when comparing all cases (n=748) to self-reported cases only (n=450). For patients diagnosed with Grade II and Grade III histology, moderate (915.8-2118.3 mcg) intake of fat-soluble lycopene was associated with poorer survival when compared to low intake (0.0-914.8 mcg), for self-reported cases only. High intake of vitamin E and moderate/high intake of secoisolariciresinol among Grade III patients indicated greater survival for all cases. In Grade IV patients, moderate/high intake of cryptoxanthin and high intake of secoisolariciresinol were associated with poorer survival among all cases. Among Grade II patients, moderate intake of water-soluble folate was associated with greater survival for all cases; high intake of vitamin C and genistein and the highest level of the antioxidant index were associated with poorer survival for all cases. CONCLUSIONS: The associations observed in our study suggest that the influence of some antioxidants on survival following a diagnosis of malignant glioma are inconsistent and vary by histology group. Further research in a large sample of glioma patients is needed to confirm/refute our results.
Resumo:
Decompressive hemicraniectomy has been used increasingly in recent years to treat malignant middle cerebral artery territory infarction. This review examines functional outcome data, with the novel analysis of outcomes according to temporal periods post-surgery. Case series data were pooled to determine significant correlates of outcome. Severe disability was frequently the outcome among survivors within one month post-surgery. Time and rehabilitation were later reflected, with fewer deaths and the emergence of mild to moderate disability increasing in prevalence. Mortality and severe disability were consistently more probable with increasing age. Presurgical clinical status in the form of additional cerebral artery involvement and midline shift also correlated with mortality within the 30-day period post-stroke.
Resumo:
Purpose: This study examines long-term neuropsychological and psychosocial outcomes of survivors of malignant middle cerebral artery infarction treated via decompressive hemicraniectomy. Method: A case series design facilitated a detailed analysis of the outcomes among five participants. Neuropsychological domains assessed included premorbid and current IQ, sustained, selective and divided attention, visual and auditory memory, executive functioning and visuo-spatial ability. Psychosocial domains assessed included self-rated depression, anxiety and quality of life. Participants and their main carer were asked about their retrospective view of surgery. Results: All participants showed neuropsychological impairments in multiple cognitive domains, with preserved ability in others. Effects of laterality of brain function were evident in some domains. Clinically significant depression was evident in two participants. Overall quality of life was within average limits in three of four assessed participants. Four participants retrospectively considered surgery as having been a favourable course of action. Conclusion: While neuropsychological impairments are highly likely post-surgery, preserved abilities and social support may serve a protective function against depression and an unacceptably poor quality of life. Results do not support the suggestion that decompressive hemicraniectomy following malignant middle cerebral artery infarction necessarily leads to unacceptable neuropsychological or psychosocial outcomes.
Resumo:
Purpose: This study explores the experiences and sense of burden of family carers of survivors of malignant middle cerebral artery infarctions who had undergone decompressive hemicraniectomy. To date, there have been no studies examining carer outcomes among this unique population. This study, taken alongside an already published study of survivor outcomes, provides a more holistic picture with regard to sequelae within the sample. Method: Six family carers completed the Sense of Competence Questionnaire and the Hospital Anxiety and Depression Scale. These results were compared with existing normative data. Carers also consented to a semi-structured interview. Interview data were examined using thematic content analysis. Consistent with the mixed methods design, quantitative and qualitative findings were integrated for further analysis. Results: While carers experienced many losses, their overall sense of burden was not outside 'Average' limits, nor did they experience clinically significant symptoms of depression. All carers identified methods of coping with the demands of caregiving. These included intrapersonal, interpersonal and practical strategies. All carers apart from one were able to identify areas of post-traumatic growth. Conclusion: Carers will benefit from information, support and care. In addition, problem solving skills are essential in managing the myriad difficulties that arise in the aftermath of stroke. [Box: see text].
Resumo:
Upon searching for glucocorticoid-regulated cDNA sequences associated with the transformed to normal phenotypic reversion of C6/ST1 rat glioma cells, we identified Nrp/b (nuclear restrict protein in brain) as a novel rat gene. Here we report on the identification and functional characterization of the complete sequence encoding the rat NRP/B protein. The cloned cDNA presented a 1767 nucleotides open-reading frame encoding a 589 aminoacids residues sequence containing a BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain in its N-terminal region and kelch motifs in its C-terminal region. Sequence analysis indicates that the rat Nrp/b displays a high level of identity with the equivalent gene orthologs from other organisms. Among rat tissues, Nrp/b expression is more pronounced in brain tissue. We show that overexpression of the Nrp/b cDNA in C6/ST1 cells suppresses anchorage independence in vitro and tumorigenicity in vivo, altering their malignant nature towards a more benign phenotype. Therefore, Nrp/b may be postulated as a novel tumor suppressorgene, with possible relevance for glioblastoma therapy. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
OBJECT: The aim of this study was to develop and characterize a new orthotopic, syngeneic, transplantable mouse brain tumor model by using the cell lines Tu-9648 and Tu-2449, which were previously isolated from tumors that arose spontaneously in glial fibrillary acidic protein (GFAP)-v-src transgenic mice. METHODS: Striatal implantation of a 1-microl suspension of 5000 to 10,000 cells from either clone into syngeneic B6C3F1 mice resulted in tumors that were histologically identified as malignant gliomas. Prior subcutaneous inoculations with irradiated autologous cells inhibited the otherwise robust development of a microscopically infiltrating malignant glioma. Untreated mice with implanted tumor cells were killed 12 days later, when the resultant gliomas were several millimeters in diameter. Immunohistochemically, the gliomas displayed both the astroglial marker GFAP and the oncogenic form of signal transducer and activator of transcription-3 (Stat3). This form is called tyrosine-705 phosphorylated Stat3, and is found in many malignant entities, including human gliomas. Phosphorylated Stat3 was particularly prominent, not only in the nucleus but also in the plasma membrane of peripherally infiltrating glioma cells, reflecting persistent overactivation of the Janus kinase/Stat3 signal transduction pathway. The Tu-2449 cells exhibited three non-random structural chromosomal aberrations, including a deletion of the long arm of chromosome 2 and an apparently balanced translocation between chromosomes 1 and 3. The GFAP-v-src transgene was mapped to the pericentromeric region of chromosome 18. CONCLUSIONS: The high rate of engraftment, the similarity to the high-grade malignant glioma of origin, and the rapid, locally invasive growth of these tumors should make this murine model useful in testing novel therapies for human malignant gliomas.
Resumo:
OBJECT A main concern with regard to surgery for low-grade glioma (LGG, WHO Grade II) is maintenance of the patient's functional integrity. This concern is particularly relevant for gliomas in the central region, where damage can have grave repercussions. The authors evaluated postsurgical outcomes with regard to neurological deficits, seizures, and quality of life. METHODS Outcomes were compared for 33 patients with central LGG (central cohort) and a control cohort of 31 patients with frontal LGG (frontal cohort), all of whom had had medically intractable seizures before undergoing surgery with mapping while awake. All surgeries were performed in the period from February 2007 through April 2010 at the same institution. RESULTS For the central cohort, the median extent of resection was 92% (range 80%-97%), and for the frontal cohort, the median extent of resection was 93% (range 83%-98%; p = 1.0). Although the rate of mild neurological deficits was similar for both groups, seizure freedom (Engel Class I) was achieved for only 4 (12.1%) of 33 patients in the central cohort compared with 26 (83.9%) of 31 patients in the frontal cohort (p < 0.0001). The rate of return to work was lower for patients in the central cohort (4 [12.1%] of 33) than for the patients in the frontal cohort (28 [90.3%] of 31; p < 0.0001). CONCLUSIONS Resection of central LGG is feasible and safe when appropriate intraoperative mapping is used. However, seizure control for these patients remains poor, a finding that contrasts markedly with seizure control for patients in the frontal cohort and with that reported in the literature. For patients with central LGG, poor seizure control ultimately determines quality of life because most will not be able to return to work.
Resumo:
Malignant brain tumors are one of the most challenging cancers affecting society today. In a recent survey, an estimated 17,000 annual cases were recorded with a staggering total of 13,300 deaths. A unique degree of heterogeneity typifies glial tumors and presents a challenge for solitary anti-neoplastic treatments. Tumors subsist as heterogeneous masses that progress through dysplasia to astrocytomas, mixed glioma and glioblastoma multiforme. Although traditional therapeutic approaches have provided increments of success, the median survival time remains 12 months. The urgency to improve upon current clinical protocols has encouraged alternative experimental strategies such as p53 adenoviral gene therapy (Ad-p53). This study addresses the efficacy of Ad-p53 for the treatment of glioma. Our model presents a tumor response that is unique among human cancers. Ad-p53 effectively induces apoptosis in mutant p53 expressing cells yet fails to do so in those with wildtype p53. In order to adopt Adp53 as a standard anti-cancer modality, we characterized the role of the tumor suppressor gene p53 in mediating apoptosis. We demonstrate that altering cellular p53 status through the introduction of a dominant negative mutant p53 (175H, 248W, 273H) sensitized cells to Ad-p53. We discovered that wild-type p53 expressing glioma cells retain the apoptotic machinery necessary to accomplish cell death, but have developed mechanisms that interfere with p53 signaling. Earlier studies have not addressed the mechanisms of Ad-p53 apoptosis nor the resistance exhibited by wild-type p53 glioma. To explain the divergent phenotypes, we identified apoptotic pathways activated and effectors of the response. We illustrated that modulation of the death receptor Fas/APO-1 is a principal means of Ad-p53 signaling that is impaired in wild-type p53 glioma. Moreover, the apoptotic response was found to be a multi-faceted process that engaged several caspases, most notably caspases -1, -3 and -8. Lastly, we assessed the ability of anti-apoptotic molecules Bcl-2 and CrmA to inhibit Ad-p53 apoptosis. These studies revealed that Ad-p53 is a powerful tool for inducing apoptosis that can be delayed but not inhibited by anti-apoptotic means. This work is critical for understanding the development of glioma and the phenotypic and genotypic alterations that account for tumor resistance. ^