223 resultados para Majorana Neutrinos


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In dieser Dissertation wird der seltene Zerfall K_L->emu imRahmen eines verallgemeinerten Standardmodells detailliertstudiert. In diesem Prozess bleibt die zu einer gegebenen Familie gehoerende Leptonenzahl nicht erhalten. Deswegenwerden unsere Untersuchungen im Rahmen der SU(2)_L x U(1)_Y-und SU(2)_R x SU(2)_L x U(1)_{B-L}-Modelle mit schwerenMajorana-Neutrinos ausgefuehrt. Die wichtigsten Ergebnisse dieser Arbeit betreffen dieBerechnung des Verzweigungsverhaeltnisses fuer den ZerfallK_L->emu. Im SU(2)_L x U(1)_Y-Modell mit schwerenMajorana-Neutrinos wird eine deutliche Steigerung desVerzweigungsverhaeltnisses gefunden, jedoch liegen dieerhaltenen Ergebnisse um einige Groessenordnungen unter derjetzigen experimentellen Grenze. Benutzt man das gewaehlte,auf der SU(2)_R x SU(2)_L x U(1)_{B-L}$-Eichgruppebasierende Modell mit Links-Rechts-Symmetrie, dann erhoehtdie Anwesenheit der links- und rechtshaendigen Stroeme inden Schleifendiagrammen deutlich den Wert desVerzweigungsverhaeltnisses. Dadurch koennen sich Werte inder Naehe der aktuellen experimentellen Grenze vonB(K_L->emu) < 4.7 x 10^{-12} ergeben. Um unsere Ergebnisse zu untermauern, wird die Frage derEichinvarianz bei diesem Zerfallsprozess auf demEin-Schleifen-Niveau mit besonderer Aufmerksamkeitbehandelt. Ein sogenanntes ,,on-shell skeleton``Renormierungsschema wird benutzt, um die erste vollstaendigeAnalyse der Eichinvarianz fuer den Prozess K_L->emuauszufuehren.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that under gravity the effective masses for neutrino and antineutrino are different which opens a possible window of neutrino-antineutrino oscillation even if the rest masses of the corresponding eigenstates are same. This is due to CPT violation and possible to demonstrate if the neutrino mass eigenstates are expressed as a combination of neutrino and antineutrino eigenstates, as of the neutral kaon system, with the plausible breaking of lepton number conservation. In early universe, in presence of various lepton number violating processes, this oscillation might lead to neutrino-antineutrino asymmetry which resulted baryogenesis from the B-L symmetry by electro-weak sphaleron processes. On the other hand, for Majorana neutrinos, this oscillation is expected to affect the inner edge of neutrino dominated accretion disks around a compact object by influencing the neutrino sphere which controls the accretion dynamics, and then the related type-II supernova evolution and the r-process nucleosynthesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several topics on CP violation in the lepton sector are reviewed. A few theoretical aspects concerning neutrino masses, leptonic mixing, and CP violation will be covered, with special emphasis on seesaw models. A discussion is provided on observable effects which are manifest in the presence of CP violation, particularly, in neutrino oscillations and neutrinoless double beta decay processes, and their possible implications in collider experiments such as the LHC. The role that leptonic CP violation may have played in the generation of the baryon asymmetry of the Universe through the mechanism of leptogenesis is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe the system of massive Weyl fields propagating in a background matter and interacting with an external electromagnetic field. The interaction with an electromagnetic field is due to the presence of anomalous magnetic moments. To canonically quantize this system first we develop the classical field theory treatment of Weyl spinors in frames of the Hamilton formalism which accounts for the external fields. Then, on the basis of the exact solution of the wave equation for a massive Weyl field in a background matter we obtain the effective Hamiltonian for the description of spin-flavor oscillations of Majorana neutrinos in matter and a magnetic field. Finally, we incorporate in our analysis the neutrino self-interaction which is essential when the neutrino density is sufficiently high. We also discuss the applicability of our results for the studies of collective effects in spin-flavor oscillations of supernova neutrinos in a dense matter and a strong magnetic field. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by hermiticity. After analysing the complete renormalized Lagrangian in a general theory including vector and scalar bosons with arbitrary renormalizable interactions, we consider two specific models: quark mixing in the electroweak Standard Model and mixing of Majorana neutrinos in the seesaw mechanism. A counter term for fermion mixing matrices can not be fixed by only taking into account self-energy corrections or fermion field renormalization constants. The presence of unstable particles in the theory can lead to a non-unitary renormalized mixing matrix or to a gauge parameter dependence in its counter term. Therefore, we propose to determine the mixing matrix counter term by fixing the complete correction terms for a physical process to experimental measurements. As an example, we calculate the decay rate of a top quark and of a heavy neutrino. We provide in each of the chosen models sample calculations that can be easily extended to other theories.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a novel scheme where Dirac neutrinos are realized even if lepton number violating Majorana mass terms are present. The setup is the Randall-Sundrum framework with bulk right-handed neutrinos. Bulk mass terms of both Majorana and Dirac type are considered. It is shown that massless zero mode solutions exist when the bulk Dirac mass term is set to zero. In this limit, it is found that the effective 4D small neutrino mass is primarily of Dirac nature, with the Majorana-type contributions being negligible. Interestingly, this scenario is very similar to the one known with flat extra dimensions. Neutrino phenomenology is discussed by fitting both charged lepton masses and neutrino masses simultaneously. A single Higgs localized on the IR brane is highly constrained, as unnaturally large Yukawa couplings are required to fit charged lepton masses. A simple extension with two Higgs doublets is presented, which facilitates a proper fit for the lepton masses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the unanswered questions of modern cosmology is the issue of baryogenesis. Why does the universe contain a huge amount of baryons but no antibaryons? What kind of a mechanism can produce this kind of an asymmetry? One theory to explain this problem is leptogenesis. In the theory right-handed neutrinos with heavy Majorana masses are added to the standard model. This addition introduces explicit lepton number violation to the theory. Instead of producing the baryon asymmetry directly, these heavy neutrinos decay in the early universe. If these decays are CP-violating, then they produce lepton number. This lepton number is then partially converted to baryon number by the electroweak sphaleron process. In this work we start by reviewing the current observational data on the amount of baryons in the universe. We also introduce Sakharov's conditions, which are the necessary criteria for any theory of baryogenesis. We review the current data on neutrino oscillation, and explain why this requires the existence of neutrino mass. We introduce the different kinds of mass terms which can be added for neutrinos, and explain how the see-saw mechanism naturally explains the observed mass scales for neutrinos motivating the addition of the Majorana mass term. After introducing leptogenesis qualitatively, we derive the Boltzmann equations governing leptogenesis, and give analytical approximations for them. Finally we review the numerical solutions for these equations, demonstrating the capability of leptogenesis to explain the observed baryon asymmetry. In the appendix simple Feynman rules are given for theories with interactions between both Dirac- and Majorana-fermions and these are applied at the tree level to calculate the parameters relevant for the theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10(-2) M(circle dot)c(2) at similar to 150 Hz with similar to 60 ms duration, and high-energy neutrino emission of 1051 erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6 x 10(-2) Mpc(-3) yr(-1). We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assuming that neutrinos are Majorana particles, in a three-generation framework, current and future neutrino oscillation experiments can determine six out of the nine parameters which fully describe the structure of the neutrino mass matrix. We try to clarify the interplay among the remaining parameters, the absolute neutrino mass scale and two CP violating Majorana phases, and how they can be accessed by future neutrinoless double beta (0vυββ) decay experiments, for the normal as well as for the inverted order of the neutrino mass spectrum. Assuming the oscillation parameters to be in the range presently allowed by atmospheric, solar, reactor, and accelerator neutrino experiments, we quantitatively estimate the bounds on m 0, the lightest neutrino mass, that can be inferred if the next generation 0υββ decay experiments can probe the effective Majorana mass (m ee) down to ∼1 meV. In this context we conclude that in the case that neutrinos are Majorana particles, (a) if m 0≳300 meV, i.e., within the range directly attainable by future laboratory experiments as well as astrophysical observations, then m ee≳30 meV must be observed, (b) if m 0 ≤ 300 meV, results from future 0υββ decay experiments combined with stringent bounds on the neutrino oscillation parameters, especially the solar ones, will place much stronger limits on the allowed values of m 0 than these direct experiments. For instance, if a positive signal is observed around m ee = 10 meV, we estimate 3≲m 0/meV≲65 at 95% C.L.; on the other hand, if no signal is observed down to m ee = 10 meV, then m 0≲55 meV at 95% C.L.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss symmetries and scenarios leading to quasi-degenerate neutrinos in type I seesaw models. The existence of degeneracy in the present approach is not linked to any specific structure for the Dirac neutrino Yukawa coupling matrix y(D) and holds in general. Basic input is the application of the minimal flavour violation principle to the leptonic sector. Generalizing this principle, we assume that the structure of the right-handed neutrino mass matrix is determined by y(D) and the charged lepton Yukawa coupling matrix y(l) in an effective theory invariant under specific groups G(F) contained in the full symmetry group of the kinetic energy terms. G(F) invariance also leads to specific structure for the departure from degeneracy. The neutrino mass matrix (with degenerate mass m(0)) resulting after seesaw mechanism has a simple form Mv approximate to m(0)(I - py(l)y(l)(T)) in one particular scenario based on supersymmetry. This form is shown tolead to correct description of neutrino masses and mixing angles. The thermal leptogenesis after inclusion of flavour effects can account for the observed baryon asymmetry of the universe within the present scenario. Rates for lepton flavour violating processes can occur at observable levels in the supersymmetric version of the scenario. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A continuous procedure is presented for euclideanization of Majorana and Weyl fermions without doubling their degrees of freedom. The Euclidean theory so obtained is SO(4) invariant and Osterwalder-Schrader (OS) positive. This enables us to define a one-complex parameter family of the N=1 supersymmetric Yang-Mills (SSYM) theories which interpolate between the Minkowski and a Euclidean SSYM theory. The interpolating action, and hence the Euclidean action, manifests all the continous symmetries of the original Minkowski space theory.