976 resultados para Magnetocrystalline anisotropy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature dependence and uniaxial magnetocrystalline anisotropy properties of the chemically synthesized 4 nm L1(0)-Fe55Pt45 nanoparticle assembly by a modified polyol route are reported. As-prepared nanoparticles are superparamagnetic presenting fcc structure, and annealing at 550 degrees C converts the assembly into ferromagnetic nanocrystals with large coercivity (H-C>1 T) in an L1(0) phase. Magnetic measurements showed an increasing in the ferromagnetically ordered fraction of the nanoparticles with the annealing temperature increases, and the remanence ratio, S=M-R/M-S congruent to 0.76, suggests an (111) textured film. A monotonic increase of the blocking temperature T-B, the uniaxial magnetocrystalline anisotropy constant K-U, and the coercivity H-C with increasing annealing temperature was observed. Magnetic parameters indicate an enhancement in the magnetic properties due to the improved Fe55Pt45 phase stabilizing, and the room-temperature stability parameter of 67, which indicates that the magnetization should be stable for more than ten years, makes this material suitable for ultrahigh-density magnetic recording application.(c) 2007 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An orthorhombic DyMnO3 single crystal has been studied in magnetic fields up to 14 T and between 3 K and room temperature. The field dependent ordering temperature of Dy moments is deduced. The paramagnetic Curie Weiss behavior is related mainly to the Dy3+sublattice whereas the Mn sublattice contribution plays a secondary role. DC magnetization measurements show marked anisotropic features, related to the anisotropic structure of a cubic system stretched along a body diagonal, with a magnetic easy axis parallel to the crystallographic b axis. A temperature and field dependent spin flop transition is observed below 9 K, when relatively weak magnetocrystalline anisotropy is overcome by magnetic fields up to 1.6 T. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of an applied electric field on the magnetic properties of L1(0)-ordered CoPd thin films is investigated by first-principle calculations. Both the magnetic moment and the magnetocrystalline anisotropy of the surface atoms are changed by the electric field, but the net effect depends on the surface termination. The magnetocrystalline anisotropy switches from in-plane to perpendicular in the presence of external electric field. Typical magnetic-moment changes are 0.1 mu(B) per eV/angstrom The main mechanism is the shift of the Fermi level, but the anisotropy change also reflects a crystal-field change due to incomplete screening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (f(FMR)) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 degrees C. The nanocrystallites were found to possess high degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of f(FMR) has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies. (C) 2015 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coefficient B-2(0) and the magnetic exchange interaction was studied as temperature approaches to 0 K. The results show that the stabilization energy contributed by Tb3+ is linear with crystal field coefficient B-2(0) approximately, but it is insensitive to the change of magnetic exchange interaction for the strong magnetic substances such as TbCo5, Tb2Co17 and Tb2Fe14B compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The contribution to the magnetic uniaxial perpendicular anisotropy which arises from substrate constraint through magnetostrictive effects has been measured in Ni-Fe and Ni-Co thin films evaporated on substrates at room temperature. This was accomplished by measuring the perpendicular anisotropy before and after removal of the film from the substrate. Data are given for the fcc crystal structure regions of both alloy systems, but data for Ni-Co include compositions with less than 60% Ni which have a small percentage of the hcp phase mixed with the fcc phase. The constraint contribution to the perpendicular anisotropy correlates well with the value of the bulk magnetostriction constant using the equation ∆K˔=3/2λsσ. Measured values of isotropic stress for films thicker than 600 Å were 1.6 x 1010 dyn/cm2. In films less than 600 Å thick the isotropic stress decreased with decreasing thickness. After removal of the films from the substrates, the measured perpendicular anisotropy deviated from the expected geometrical shape anisotropy near pure Ni in both alloys. This indicates that additional significant sources of anisotropy exist at these compositions.

The effect of substrate constraint on the crystalline anisotropy K1 of Ni-Fe epitaxial films has been studied by use of a film removal technique, which involves the evaporation of an epitaxial layer of LiF on MgO, the epitaxial growth of the metallic film on the LiF, and the stripping of the film with water soluble tape. Films ranging in composition from 50% to 100% Ni have been studied. For compositions below 90% Ni the experimental values agree reasonably well with the first order theoretical prediction, ∆K1=[-9/4(C11-C122 100+9/2C44λ2111].

In order to compare the magnetic properties of epitaxial thin films more completely with the properties of bulk single crystals, Ni-Fe films ranging in composition from 60% to 90% Ni, which were evaporated epitaxially on (100) MgO substrates, have been subsequently annealed at 400°C in a vacuum of less than 10-7 Torr to form the ordered Ni3Fe structure near the 75% composition. This ordered structure has been confirmed by electron diffraction.

The saturation magnetization at Ni3Fe increased about 6% with ordering which is in good agreement with previous bulk data. Measurements of the magnetocrystalline anisotropy energy K1 for the epitaxial films show the same large changes with ordering as observed in bulk single crystal samples. In the (001) plane the magnetostriction constants λ100, λ111 are directly related to the induced anisotropy due to a uniform uniaxial strain in the [100] and [110] directions respectively. Assuming that the elastic constants of a film are the same as in bulk material and are unchanged by ordering, the changes in strain sensitivity with ordering for the epitaxial films are found to be in good agreement with values predicted from bulk data. The exchange constant A as measured by ferromagnetic resonance has been measured at the Ni3Fe composition and found to increase 25% with ordering. This seems to indicate a significant increase in the Curie temperature which has only been inferred indirectly for bulk material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fe3O4 and ZnxFe3-xO4 pure and doped magnetite magnetic nanoparticles (NPs) were prepared in aqueous solution (Series A) or in a water-ethyl alcohol mixture (Series B) by the co-precipitation method. Only one ferromagnetic resonance line was observed in all cases under consideration indicating that the materials are magnetically uniform. The shortfall in the resonance fields from 3.27 kOe (for the frequency of 9.5 GHz) expected for spheres can be understood taking into account the dipolar forces, magnetoelasticity, or magnetocrystalline anisotropy. All samples show non-zero low field absorption. For Series A samples the grain size decreases with an increase of the Zn content. In this case zero field absorption does not correlate with the changes of the grain size. For Series B samples the grain size and zero field absorption behavior correlate with each other. The highest zero-field absorption corresponded to 0.2 zinc concentration in both A and B series. High zero-field absorption of Fe3O4 ferrite magnetic NPs can be interesting for biomedical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fe-N films containing the Fe16N2 phase were prepared in a high-vacuum system of ion-beam-assisted deposition (IBAD). The composition and structure of the films were analysed by Auger electron spectroscopy (AES) and X-ray diffraction (XRD), respectively. Magnetic properties of the films were measured by a vibrating sample magnetometer (VSM). The phase composition of Fe-N films depend sensitively on the N/Fe atomic arrival ratio and the deposition temperature. An Fe16N2 film was deposited successfully on a GaAs (1 0 0) substrate by IBAD at a N/Fe atomic arrival ratio of 0.12. The gram-saturation magnetic moment of the Fe16N2 film obtained is 237 emu/g at room temperature, the possible cause has been analysed and discussed. Hysteresis loops of Fe16N2 have been measured, the coercive force H-c is about 120 Oe, which is much larger than the value for Fe, this means the Fe16N2 sample exhibits a large uniaxial magnetocrystalline anisotropy. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fe-N films containing the Fe16N2 phase were prepared in a high-vacuum system of ion-beam-assisted deposition (IBAD). The composition and structure of the films were analysed by Auger electron spectroscopy (AES) and X-ray diffraction (XRD), respectively. Magnetic properties of the films were measured by a vibrating sample magnetometer (VSM). The phase composition of Fe-N films depend sensitively on the N/Fe atomic arrival ratio and the deposition temperature. An Fe16N2 film was deposited successfully on a GaAs (1 0 0) substrate by IBAD at a N/Fe atomic arrival ratio of 0.12. The gram-saturation magnetic moment of the Fe16N2 film obtained is 237 emu/g at room temperature, the possible cause has been analysed and discussed. Hysteresis loops of Fe16N2 have been measured, the coercive force H-c is about 120 Oe, which is much larger than the value for Fe, this means the Fe16N2 sample exhibits a large uniaxial magnetocrystalline anisotropy. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is shown that the Mel'nikov-Meshkov formalism for bridging the very low damping (VLD) and intermediate-to-high damping (IHD) Kramers escape rates as a function of the dissipation parameter for mechanical particles may be extended to the rotational Brownian motion of magnetic dipole moments of single-domain ferromagnetic particles in nonaxially symmetric potentials of the magnetocrystalline anisotropy so that both regimes of damping, occur. The procedure is illustrated by considering the particular nonaxially symmetric problem of superparamagnetic particles possessing uniaxial anisotropy subject to an external uniform field applied at an angle to the easy axis of magnetization. Here the Mel'nikov-Meshkov treatment is found to be in good agreement with an exact calculation of the smallest eigenvalue of Brown's Fokker-Planck equation, provided the external field is large enough to ensure significant departure from axial symmetry, so that the VLD and IHD formulas for escape rates of magnetic dipoles for nonaxially symmetric potentials are valid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different aspects of the structure-magnetism and morphology-magnetism correlation in the ultrathin limit are studied in epitaxial Fe films grown on MgO(001). In the initial stages of growth the presence of substrate steps, intrinsically higher than an Fe atomic layer, prevent the connection between Fe islands and hence the formation of large volume magnetic regions. This is proposed as an explanation to the superparamagnetic nature of ultrathin Fe films grown on MgO in addition to the usually considered islanded, or Vollmer-Weber, growth. Using this model, we explain the observed transition from superparamagnetism to ferromagnetism for Fe coverages above 3 monolayers (ML). However, even though ferromagnetism and magnetocrystalline anisotropy are observed for 4 ML, complete coverage of the MgO substrate by the Fe ultrathin films only occurs around 6 ML as determined by polar Kerr spectra and simulations that consider different coverage situations. In annealed 3.5 ML Fe films, shape or configurational anisotropy dominates the intrinsic magnetocrystalline anisotropy, due to an annealing induced continuous to islanded morphological transition. A small interface anisotropy in thicker films is observed, probably due to dislocations observed at the Fe¿MgO(001) interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been playing a lead role in improving the quality of life. They are increasingly being used in a wide variety of applications ranging from compasses to modern technological devices. Metallic glasses occupy an important position among magnetic materials. They assume importance both from a scientific and an application point of view since they represent an amorphous form of condensed matter with significant deviation from thermodynamic equilibrium. Metallic glasses having good soft magnetic properties are widely used in tape recorder heads, cores of high-power transformers and metallic shields. Superconducting metallic glasses are being used to produce high magnetic fields and magnetic levitation effect. Upon heat treatment, they undergo structural relaxation leading to subtle rearrangements of constituent atoms. This leads to densification of amorphous phase and subsequent nanocrystallisation. The short-range structural relaxation phenomenon gives rise to significant variations in physical, mechanical and magnetic properties. Magnetic amorphous alloys of Co-Fe exhibit excellent soft magnetic properties which make them promising candidates for applications as transformer cores, sensors, and actuators. With the advent of microminiaturization and nanotechnology, thin film forms of these alloys are sought after for soft under layers for perpendicular recording media. The thin film forms of these alloys can also be used for fabrication of magnetic micro electro mechanical systems (magnetic MEMS). In bulk, they are drawn in the form of ribbons, often by melt spinning. The main constituents of these alloys are Co, Fe, Ni, Si, Mo and B. Mo acts as the grain growth inhibitor and Si and B facilitate the amorphous nature in the alloy structure. The ferromagnetic phases such as Co-Fe and Fe-Ni in the alloy composition determine the soft magnetic properties. The grain correlation length, a measure of the grain size, often determines the soft magnetic properties of these alloys. Amorphous alloys could be restructured in to their nanocrystalline counterparts by different techniques. The structure of nanocrystalline material consists of nanosized ferromagnetic crystallites embedded in an amorphous matrix. When the amorphous phase is ferromagnetic, they facilitate exchange coupling between nanocrystallites. This exchange coupling results in the vanishing of magnetocrystalline anisotropy which improves the soft magnetic properties. From a fundamental perspective, exchange correlation length and grain size are the deciding factors that determine the magnetic properties of these nanocrystalline materials. In thin films, surfaces and interfaces predominantly decides the bulk property and hence tailoring the surface roughness and morphology of the film could result in modified magnetic properties. Surface modifications can be achieved by thermal annealing at various temperatures. Ion irradiation is an alternative tool to modify the surface/structural properties. The surface evolution of a thin film under swift heavy ion (SHI) irradiation is an outcome of different competing mechanism. It could be sputtering induced by SHI followed by surface roughening process and the material transport induced smoothening process. The impingement of ions with different fluence on the alloy is bound to produce systematic microstructural changes and this could effectively be used for tailoring magnetic parameters namely coercivity, saturation magnetization, magnetic permeability and remanence of these materials. Swift heavy ion irradiation is a novel and an ingenious tool for surface modification which eventually will lead to changes in the bulk as well as surface magnetic property. SHI has been widely used as a method for the creation of latent tracks in thin films. The bombardment of SHI modifies the surfaces or interfaces or creates defects, which induces strain in the film. These changes will have profound influence on the magnetic anisotropy and the magnetisation of the specimen. Thus inducing structural and morphological changes by thermal annealing and swift heavy ion irradiation, which in turn induce changes in the magnetic properties of these alloys, is one of the motivation of this study. Multiferroic and magneto-electrics is a class of functional materials with wide application potential and are of great interest to material scientists and engineers. Magnetoelectric materials combine both magnetic as well as ferroelectric properties in a single specimen. The dielectric properties of such materials can be controlled by the application of an external magnetic field and the magnetic properties by an electric field. Composites with magnetic and piezo/ferroelectric individual phases are found to have strong magnetoelectric (ME) response at room temperature and hence are preferred to single phasic multiferroic materials. Currently research in this class of materials is towards optimization of the ME coupling by tailoring the piezoelectric and magnetostrictive properties of the two individual components of ME composites. The magnetoelectric coupling constant (MECC) (_ ME) is the parameter that decides the extent of interdependence of magnetic and electric response of the composite structure. Extensive investigates have been carried out in bulk composites possessing on giant ME coupling. These materials are fabricated by either gluing the individual components to each other or mixing the magnetic material to a piezoelectric matrix. The most extensively investigated material combinations are Lead Zirconate Titanate (PZT) or Lead Magnesium Niobate-Lead Titanate (PMNPT) as the piezoelectric, and Terfenol-D as the magnetostrictive phase and the coupling is measured in different configurations like transverse, longitudinal and inplane longitudinal. Fabrication of a lead free multiferroic composite with a strong ME response is the need of the hour from a device application point of view. The multilayer structure is expected to be far superior to bulk composites in terms of ME coupling since the piezoelectric (PE) layer can easily be poled electrically to enhance the piezoelectricity and hence the ME effect. The giant magnetostriction reported in the Co-Fe thin films makes it an ideal candidate for the ferromagnetic component and BaTiO3 which is a well known ferroelectric material with improved piezoelectric properties as the ferroelectric component. The multilayer structure of BaTiO3- CoFe- BaTiO3 is an ideal system to understand the underlying fundamental physics behind the ME coupling mechanism. Giant magnetoelectric coupling coefficient is anticipated for these multilayer structures of BaTiO3-CoFe-BaTiO3. This makes it an ideal candidate for cantilever applications in magnetic MEMS/NEMS devices. SrTiO3 is an incipient ferroelectric material which is paraelectric up to 0K in its pure unstressed form. Recently few studies showed that ferroelectricity can be induced by application of stress or by chemical / isotopic substitution. The search for room temperature magnetoelectric coupling in SrTiO3-CoFe-SrTiO3 multilayer structures is of fundamental interest. Yet another motivation of the present work is to fabricate multilayer structures consisting of CoFe/ BaTiO3 and CoFe/ SrTiO3 for possible giant ME coupling coefficient (MECC) values. These are lead free and hence promising candidates for MEMS applications. The elucidation of mechanism for the giant MECC also will be the part of the objective of this investigation.