998 resultados para Magnetic zeolite NaA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimum parameters for synthesis of zeolite NaA based on metakaolin were investigated according to results of cation exchange capacity and static water adsorption of all synthesis products and selected X-ray diffraction (XRD). Magnetic zeolite NaA was synthesized by adding Fe3O4 in the precursor of zeolite. Zeolite NaA and magnetic zeolite NaA were characterized with scanning electron microscopy (SEM) and XRD. Magnetic zeolite NaA with different Fe3O4 loadings was prepared and used for removal of heavy metals (Cu2+, Pb2+). The results show the optimum parameters for synthesis zeolite NaA are SiO2/Al2O3 = 2.3, Na2O/SiO2 = 1.4, H2O/Na2O = 50, crystallization time 8 h, crystallization temperature 95 �C. The addition of Fe3O4 makes the NaA zeolite with good magnetic susceptibility and good magnetic stability regardless of the Fe3O4 loading, confirming the considerable separation efficiency. Additionally, Fe3O4 loading had a little effect on removal of heavy metal by magnetic zeolite, however, the adsorption capacity still reaches 2.3 mmol g�1 for Cu2+, Pb2+ with a removal efficiency of over 95% in spite of 4.7% Fe3O4 loading. This indicates magnetic zeolite can be used to remove metal heavy at least Cu2+, Pb2+ from water with metallic contaminants and can be separated easily after a magnetic process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic zeolite NaA with different Fe3O4 loadings was prepared by hydrothermal synthesis based on metakaolin and Fe3O4. The effect of added Fe3O4 on the removal of ammonium by zeolite NaA was investigated by varying the Fe3O4 loading, pH, adsorption temperature, initial concentration, adsorption time. Langmuir, Freundlich, and pseudo-second-order modeling were used to describe the nature and mechanism of ammonium ion exchange using both zeolite and magnetic zeolite. Thermodynamic parameters such as change in Gibbs free energy, enthalpy and entropy were calculated. The results show that all the selected factors affect the ammonium ion exchange by zeolite and magnetic zeolite, however, the added Fe3O4 apparently does not affect the ion exchange performance of zeolite to the ammonium ion. Freundlich model provides a better description of the adsorption process than Langmuir model. Moreover, kinetic analysis indicates the exchange of ammonium on the two materials follows a pseudosecond-order model. Thermodynamic analysis makes it clear that the adsorption process of ammonium is spontaneous and exothermic. Regardless of kinetic or thermodynamic analysis, all the results suggest that no considerable effect on the adsorption of the ammonium ion by zeolite is found after the addition of Fe3O4. According to the results, magnetic zeolite NaA can be used for the removal of ammonium due to the good adsorption performance and easy separation method from aqueous solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a lattice model for adsorption in microporous materials, pure component adsorption isotherms are obtained within a mean field approximation for methane at 300 K and xenon at 300 and 360 K in zeolite NaA. It is argued that the increased repulsive adsorbate-adsorbate interactions at high coverages must play an important role in determining the adsorption behavior. Therefore, this feature is incorporated through a "coverage-dependent interaction'' model, which introduces a free, adjustable parameter. Another important feature, the site volume reduction, has been treated in two ways: a van der Waal model and a 1D hard-rod theory [van Tassel et al., AIChE J. 40, 925 (1994)]; we have also generalized the latter to include all possible adsorbate overlap scenarios. In particular, the 1D hard-rod model, with our coverage-dependent interaction model, is shown to be in best quantitative agreement with the previous grand canonical Monte Carlo isotherms. The expressions for the isosteric heats of adsorption indicate that attractive and repulsive adsorbate-adsorbate interactions increase and decrease the heats of adsorption, respectively. It is concluded that within the mean field approximation, our simple model for repulsive interactions and the 1D hard-rod model for site volume reduction are able to capture most of the important features of adsorption in confined regions. (C) 1999 American Institute of Physics. [S0021-9606(99)70515-5].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reported the NaA zeolite membranes with high permeance synthesized with microwave heating method under different conditions: (1) on a macroporous substrate in gel, (11) on a mesoporous/macroporous (top-mesoporous-layer-modified macroporous) substrate in gel, and (111) on a mesoporous/macroporous substrate in sol. In general, the H-2 permeance of the NaA membranes by microwave heating in gel was usually at the level of 10(-6) mol s(-1) m(-2) Pa-1, much higher than that by the conventional hydrothermal synthesis. At similar H-2/C3H8 permselectivity. On the substrate modified mesoporous top layer, the H-2 permeance of the NaA membranes by microwave heating in gel or sol was further enhanced, while maintaining comparable H-2/C3H8 permselectivity, due to the prevention of penetration of the reagent into the pores of the macroporous substrate. Meanwhile, the synthesis took less time in sol than in gel on the mesoporous/macroporous substrate. The NaA membranes synthesized in sol had larger permeance than those in gel and underwent transformation in shorter time. The permeation of C3H8 suggested that there existed unwanted intercrystalline pores or defects in the membranes. © 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A stainless-steel net is used to support a zeolite NaA membrane synthesized using a 'seeded-growth' method. The zeolite and stainless-steel net are tightly integrated (see Figure), showing large-scale order and high mechanical stability. High oxygen permeance and high permselectivity for O-2 over N-2 (about 7) is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent computer simulations on zeolites Y and A have found that the diffusion coefficient and the rate of intercage diffusion exhibit, apart from a linear dependence on the reciprocal of the square of the sorbate diameter, an anomalous peak as sorbate diameter approaches the window diameter. Here we report molecular dynamics simulations of zeolite NaA incorporating framework flexibility as a function of sorbate diameter in order to verify the existence of anomalous diffusion. Results suggest persistence of anomalous diffusion or ring effect. This suggests that the anomalous behavior is a general effect characteristic of zeolites Y and A. The barrier for diffusion across the eight-ring window is seen to be negative and is found to decrease with sorbate size. The effect of sorbate on the cage motion has also been investigated. Results suggest that the window expands during intercage migration only if the sorbate size is comparable to the window diameter. Flexible cage simulations yield a higher value for the diffusion coefficient and also the rate of intercage diffusion. This increase has been shown to be due to an increase in the intercage diffusions via the centralized diffusion mode rather than the surface-mediated mode. It is shown that this increase arises from an increase in the single particle density distribution in the region near the cage center.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A high quality pure hydroxy-sodalite zeolite membrane was successfully synthesized on an alpha-Al2O3 support by a novel microwave-assisted hydrothermal synthesis (MARS) method. Influence of synthesis conditions, such as synthesis time, synthesis procedure, etc., on the formation of hydroxy-sodalite zeolite membrane by MAHS method was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and gas permeation measurements. The synthesis of hydroxy-sodalite zeolite membrane by MAHS method only needed 45 min and synthesis was more than 8 times faster than by the conventional hydrothermal synthesis (CHS) method. A pure hydroxy-sodalite zeolite membrane was easily synthesized by MAHS method, while a zeolite membrane, which consisted of NaX zeolite, NaA zeolite and hydroxy-sodalite zeolite, was usually synthesized by CHS method. The effect of preparation procedures had a dramatic impact on the formation of hydroxy-sodalite zeolite membrane and a single-stage synthesis procedure produced a pure hydroxy-sodalite zeolite membrane. The pure hydroxy-sodalite zeolite membrane synthesized by MARS method was found to be well inter-grown and the thickness of the membrane was 6-7 mum. Gas permeation results showed that the hydrogen/n-butane permselectivity of the hydroxy-sodalite zeolite membrane was larger than 1000. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The solid-fluid transition properties of the n - 6 Lennard-Jones system are studied by means of extensive free energy calculations. Different values of the parameter n which regulates the steepness of the short-range repulsive interaction are investigated. Furthermore, the free energies of the n < 12 systems are calculated using the n = 12 system as a reference. The method relies on a generalization of the multiple histogram method that combines independent canonical ensemble simulations performed with different Hamiltonians and computes the free energy difference between them. The phase behavior of the fullerene C60 solid is studied by performing NPT simulations using atomistic models which treat each carbon in the molecule as a separate interaction site with additional bond charges. In particular, the transition from an orientationally frozen phase at low temperatures to one where the molecules are freely rotating at higher temperatures is studied as a function of applied pressure. The adsorption of molecular hydrogen in the zeolite NaA is investigated by means of grand-canonical Monte Carlo, in a wide range of temperatures and imposed gas pressures, and results are compared with available experimental data. A potential model is used that comprises three main interactions: van der Waals, Coulomb and induced polarization by the permanent electric field in the zeolite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The statistical thermodynamics of adsorption in caged zeolites is developed by treating the zeolite as an ensemble of M identical cages or subsystems. Within each cage adsorption is assumed to occur onto a lattice of n identical sites. Expressions for the average occupancy per cage are obtained by minimizing the Helmholtz free energy in the canonical ensemble subject to the constraints of constant M and constant number of adsorbates N. Adsorbate-adsorbate interactions in the Brag-Williams or mean field approximation are treated in two ways. The local mean field approximation (LMFA) is based on the local cage occupancy and the global mean field approximation (GMFA) is based on the average coverage of the ensemble. The GMFA is shown to be equivalent in formulation to treating the zeolite as a collection of interacting single site subsystems. In contrast, the treatment in the LMFA retains the description of the zeolite as an ensemble of identical cages, whose thermodynamic properties are conveniently derived in the grand canonical ensemble. For a z coordinated lattice within the zeolite cage, with epsilon(aa) as the adsorbate-adsorbate interaction parameter, the comparisons for different values of epsilon(aa)(*)=epsilon(aa)z/2kT, and number of sites per cage, n, illustrate that for -1 0. We compare the isotherms predicted with the LMFA with previous GMFA predictions [K. G. Ayappa, C. R. Kamala, and T. A. Abinandanan, J. Chem. Phys. 110, 8714 (1999)] (which incorporates both the site volume reduction and a coverage-dependent epsilon(aa)) for xenon and methane in zeolite NaA. In all cases the predicted isotherms are very similar, with the exception of a small steplike feature present in the LMFA for xenon at higher coverages. (C) 1999 American Institute of Physics. [S0021-9606(99)70333-8].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three studies were performed using tailings kaolin for the synthesis of zeolite A. The first synthesis of zeolite A was performed using a kaolin waste generated from the beneficiation of kaolin for paper production process was studied. The kaolin waste was thermally activated at a temperature range of 550-800°C. For comparison was performed a synthesis pattern of Zeolite A(procedure IZA). The prepared materials were characterized by 27Al MAS NMR, X-ray diffraction and scanning electron microscopy with microprobe rays. The pre-tramento proved to be the most appropriate and suitable temperatures are between 600 and 700°C. Observed the formation of zeolite A in all materials, reaching 52% crystallinity, and the presence of phase sodalite and amorphous material. The second study was the use of a highly reactive metakaolin originating from the Jari region in the synthesis of zeolite A by a new method of hydrothermal synthesis. The zeolite is obtained pure and highly crystalline employing the Jari kaolin calcined at 600 ° C for 2h when the transformation to metakaolin occurs. Get to zeolite phase A at 4pm. The best crystallization time was of 24 h afforded a crystallinity of 67.9%. The third study was the evaluation of the NaOH / metakaolin and crystallization time on the synthesis of zeolite NaA from a sample of kaolin waste, named Kaolin Coverage. The experiments were performed using statistical design (axial points) and rejoinder the center point. The samples were characterized by X-ray diffraction (XRD), scanning microscopic analysis and chemical analysis using an EPMA microprobe. The results showed that a relationship exists between the amount of NaOH added and the crystallization time. The experiment performed using the lowest ratio NaOH / metakaolin (0.5) and shorter (4 h) produced an amorphous material. The increase ratio of NaOH / metakaolin and crystallization time leads to formation of a more crystalline NaA phase, but the presence of phase with sodalite as impurities

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pigmentos tipo ultramar foram sintetizados com sucesso a partir de zeólita NaA derivada de caulim e rejeito de caulim. Tal rejeito tem sido uma excelente fonte de silício e alumínio na síntese de zeólitas, por ser uma matéria-prima “natural” com alta concentração de caulinita e baixos teores de impurezas, além do menor custo em comparação àquelas matérias-primas industrializadas. A zeólita NaA derivada de tal rejeito apresenta características estruturais favoráveis a síntese de pigmentos ultramar, sua estrutura encapsula as espécies de enxofre formadas, que agem como cromóforos, e impedem que essas espécies se oxidem e seja liberado elevados teores de gases tóxicos durante a reação. Zeólita NaA foi misturada com enxofre e carbonato de sódio em diferentes proporções com o objetivo de verificar a influência dessa variação na cor e na tonalidade dos pigmentos. Após calcinação a 500 °C por 5 horas os produtos foram caracterizados por DRX, FRX e Raman, além da classificação visual por cor e tonalidade por meio de fotografias. O resultado foi produtos com coloração que variaram do azul ao verde com diferentes tonalidades, ambas influenciadas pela quantidade de aditivos, pela taxa de resfriamento após calcinação e pela granulometria. Assim, pode-se dizer que quantidades diferentes dos mesmos aditivos na mesma matriz zeolítica proporcionam aumento de intensidade da cor, que a taxa de resfriamento após calcinação e granulometria da matriz zeolítica provoca mudança da cor. A partir de DRX foi observado que a estrutura da zeólita NaA não é transformada para o tipo sodalita, como normalmente observado na literatura. Por espectroscopia Raman foram identificadas as espécies de enxofre responsáveis pela coloração no pigmento zeolítico, sendo: S6 2- o responsável pela cor amarela e o S3- pela cor azul, e que a mistura dos dois resultou na cor verde, que predominou nesse trabalho. Por fim, o aproveitamento de rejeito de caulim na produção de pigmentos zeolíticos parece ser uma boa proposta de produção sustentável.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

NaA zeolite membrane was successfully synthesized on a ceramic hollow fiber with an outer diameter of 400 mum, a thickness of 100 mum and an average pore radius of 0.1 mum. The as-synthesized membranes were characterized by XRD, SEM as well as gas permeation. A continuous C NaA zeolite membrane formed after a three-stage synthesis. The membrane thickness was similar to5 mum. Gas permeation data indicated that a relatively high quality NaA zeolite membrane formed on the ceramic hollow fiber support. (C) 2003 Elsevier B.V. All rights reserved.