984 resultados para Magnetic core
Resumo:
Isolating, purifying, and identifying proteins in complex biological matrices is often difficult, time consuming, and unreliable. Herein we describe a rapid screening technique for proteins in biological matrices that combines selective protein isolation with direct surface enhanced Raman spectroscopy (SERS) detection. Magnetic core gold nanoparticles were synthesised, characterised, and subsequently functionalized with recombinant human erythropoietin (rHuEPO)-specific antibody. The functionalized nanoparticles were used to capture rHuEPO from horse blood plasma within 15 minutes. The selective binding between the protein and the functionalized nanoparticles was monitored by SERS. The purified protein was then released from the nanoparticles’ surface and directly spectroscopically identified on a commercial nanopillar SERS substrate. ELISA independently confirmed the SERS identification and quantified the released rHuEPO. Finally, the direct SERS detection of the extracted protein was successfully demonstrated for in-field screening by a handheld Raman spectrometer within 1 minute sample measurement time.
Resumo:
In this paper, we have reported a facile method for the synthesis of ordered magnetic core-manganese oxide shell nanostructures. The process included two steps. First, manganese ferrite nanoparticles were obtained through a solvothermal method. Then, the manganese ferrite nanoparticles were mixed directly with KMnO4 solution without any additional modified procedures of the magnetic cores. It has been found that Mn element in the core can react with KMnO4 to form manganese oxide which acts as a seed for the in-situ growth of manganese oxide shells. This is significant for the controllable fabrication of symmetrical ordered manganese oxide shell structures. The shell thickness can be easily controlled through the reaction time. Transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and energy-dispersive X-ray spectroscopy have been employed to characterize the products at different reaction time.
Resumo:
Bifunctional nanoarchitecture has been developed by combining the magnetic iron oxide and the luminescent Ru(bpy)(3)(2+) encapsulated in silica. First, the iron oxide nanoparticles were synthesized and coated with silica, which was used to isolate the magnetic nanoparticles from the outer-shell encapsulated Ru(bpy)(3)(2+) to prevent luminescence quenching. Then onto this core an outer shell of silica containing encapsulated Ru(bpy)(3)(2+) was grown through the Stober method. Highly luminescent Ru(bpy)(3)(2+) serves as a luminescent marker, while magnetic Fe3O4 nanoparticles allow external manipulation by a magnetic field. Since Ru(bpy)(3)(2+) is a typical electrochemiluminescence (ECL) reagent and it could still maintain such property when encapsulated in the bifunctional nanoparticle, we explored the feasibility of applying the as-prepared nanostructure to fabricating an ECL sensor; such method is simple and effective. We applied the prepared ECL sensor not only to the typical Ru(bpy)(3)(2+) co-reactant tripropylamine (TPA), but also to the practically important polyamines. Consequently, the ECL sensor shows a wide linear range, high sensitivity, and good stability.
Resumo:
This paper is a contribution for the assessment and comparison of magnet properties based on magnetic field characteristics particularly concerning the magnetic induction uniformity in the air gaps. For this aim, a solver was developed and implemented to determine the magnetic field of a magnetic core to be used in Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry. The electromagnetic field computation is based on a 2D finite-element method (FEM) using both the scalar and the vector potential formulation. Results for the magnetic field lines and the magnetic induction vector in the air gap are presented. The target magnetic induction is 0.2 T, which is a typical requirement of the FFC NMR technique, which can be achieved with a magnetic core based on permanent magnets or coils. In addition, this application requires high magnetic induction uniformity. To achieve this goal, a solution including superconducting pieces is analyzed. Results are compared with a different FEM program.
Resumo:
"January 7, 1954"
Electric Vehicle Battery Charger: Wireless Power Transfer System Controlled by Magnetic Core Reactor
Resumo:
This paper presents a control process and frequency adjustment based on the magnetic core reactor for electric vehicle battery charger. Since few decades ago, there have been significant developments in technologies used in wireless power transfer systems, namely in battery charger. In the wireless power transfer systems is essential that the frequency of the primary circuit be equal to the frequency of the secondary circuit so there is the maximum energy transfer. The magnetic core reactor allows controlling the frequencies on both sides of the transmission and reception circuits. Also, the assembly diagrams and test results are presented.
Resumo:
In recent years, magnetic core-shell nanoparticles have received widespread attention due to their unique properties that can be used for various applications. We introduce here a magnetic core-shell nanoparticle system for potential application as a contrast agent in magnetic resonance imaging (MRI). MnFe2O4-Fe3O4 core-shell nanoparticles were synthesized by the wet-chemical synthesis method. Detailed structural and compositional charaterization confirmed the formation of a core-shell microstructure for the nanoparticles. Magnetic charaterization revealed the superparamagnetic nature of the as-synthesized core-shell nanoparticles. Average size and saturation magnetization values obtained for the as-synthesized core-shell nanoparticle were 12.5 nm and 69.34 emu g(-1) respectively. The transverse relaxivity value of the water protons obtained in the presence of the core-shell nanoparticles was 184.1 mM(-1) s(-1). To investigate the effect of the core-shell geometry towards enhancing the relaxivity value, transverse relaxivity values were also obtained in the presence of separately synthesized single phase Fe3O4 and MnFe2O4 nanoparticles. Average size and saturation magnetization values for the as-synthesized Fe3O4 nanoparticles were 12 nm and 65.8 emu g(-1) respectively. Average size and saturation magnetization values for the MnFe2O4 nanoparticles were 9 nm and 61.5 emu g(-1) respectively. The transverse relaxivity value obtained in the presence of single phase Fe3O4 and MnFe2O4 nanoparticles was 96.6 and 83.2 mM(-1) s(-1) respectively. All the nanoparticles (core-shell and single phase) were coated with chitosan by a surfactant exchange reaction before determining the relaxivity values. For similar nanoparticle sizes and saturation magnetization values, the highest value of the transverse relaxivity in the case of core-shell nanoparticles clearly illustrated that the difference in the magnetic nature of the core and shell phases in the core-shell nanoparticles creates greater magnetic inhomogeneity in the surrounding medium yielding a high value for proton relaxivity. The MnFe2O4-Fe3O4 core-shell nanoparticles exhibited extremely low toxicity towards the MCF-7 cell line. Taken together, this opens up new avenues for the use of core-shell nanoparticles in MRI.
Resumo:
An equimolar mixture of Ni(NO(3))(2)center dot 6H(2)O and pyridine-2-aldehyde with two equivalents of NaN(3) in methanol in the presence of NaOMe resulted in the formation of light green precipitate which upon crystallization from dimethylformamide (DMF) yielded light green single crystals [{Ni(2)Na(2)(pic)(4)(N(3))(2)(H(2)O)(2)(MeOH)}center dot MeOH center dot 3H(2)O](n) (1) and [{Ni(2)Na(2)(pic)(4)(N(3))(2)(H(2)O)(4)}center dot 2DMF center dot H(2)O](n) (2) (pic = pyridine-2-carboxylate) at room temperature and high temperature (100 degrees C), respectively. Variable temperature magnetic studies revealed the existence of overall ferromagnetic behaviour with J approximate to + 10 cm(-1) and D approximate to -2 to -7 cm(-1) for 1 and 2, respectively. Negative D values as well as variation of D upon slight distortion of structure by varying reaction temperature were observed. The X-band Electron Paramagnetic Resonance (EPR) spectra of both 2 and 3 were recorded below 50 K. The structural distortion was also implicated from the EPR spectra. Density Functional Theory (DFT) calculations on both complexes were performed in two different ways to corroborate the magnetic results. Considering only Ni(2)(II) dimeric unit, results were J = + 20.65 cm(-1) and D = -3.16 cm(-1) for 1, and J = +24.56 cm(-1) and D = -4.67 cm(-1) for 2. However, considering Ni(2)(II)Na(2)(I) cubane as magnetic core the results were J = +16.35 cm(-1) (1), +19.54 cm(-1) (2); D = -3.05 cm(-1) (1), -4.25 cm(-1) (2).
Resumo:
The subject of the present work is the synthesis of novel nanoscale objects, designed for self-propulsion under external actuation. The synthesized objects present asymmetric hybrid particles, consisting of a magnetic core and polymer flagella and their hydrodynamic properties under the actuation by external magnetic fields are investigated. The single-domain ferromagnetic cobalt ferrite nanoparticles are prepared by thermal decomposition of a mixture of metalorganic complexes based on iron (III) cobalt (II) in non-polar solvents. Further modification of the particles includes the growth of the silver particle on the surface of the cobalt ferrite particle to form a dumbbell-shaped heterodimer. Different possible mechanisms of dumbbell formation are discussed. A polyelectrolyte tail with ability to adjust the persistence length of the polymer, and thus the stiffness of the tail, by variation of pH is attached to the particles. A polymer tail consisting of a polyacrylic acid chain is synthesized by hydrolysis of poly(tert-butyl acrylate) obtained by atom transfer radical polymerization (ATRP). A functional thiol end-group enables selective attachment of the tail to the silver part of the dumbbell, resulting in an asymmetric functionalization of the dumbbells. The calculations on the propulsion force and the sperm number for the resulting particles reveal a theoretical possibility for the propelled motion. Under the actuation of the particles with flagella by alternating magnetic field an increase in the diffusion coefficient compared to non-actuated or non-functionalized particles is observed. Further development of such systems for application as nanomotors or in drug delivery is promising.
Resumo:
Magnetic nanoparticles are frequently coated with SiO2to improve their functionality and bio-compatibility in a range of biomedical and polymer nanocomposile applications. In this paper, a scalable flame aerosol technology is used to produce highly dispersible, superparamagnetic iron oxide nanoparticles hermetically coaled with silica to retain full magnetization performance. Iron oxide particles were produced by flame spray pyrolysis (FSP) of iron acelylacetonale in xylene/acetonitrile solutions, and the resulting aerosol was in situ coaled with SiO2 by oxidation of swirling hexamethlydisiloxane vapor. The process allows independent control of the core Fe2O3, particle properties and the thickness of their silica coaling film. This ensures that the non-magnetic SiO2 layer can be closely controlled and minimized. The optimal SiO2 content for complete (hermetic) encapsulation of the magnetic core particles was determined by isopropanol chemisorption. The magnetization of Fe2O3 coated with about 2 nm thin SiO2 layers was nearly identical lo that of uncoated, pure Fe2O3 nanoparlicles.
Resumo:
Magnetic nanoparticles are frequently coated with SiO2 to improve their functionality and biocom-patibility in a range of biomedical and polymer nanocomposite applications. In this paper, a scalable flame aerosol technology is used to produce highly dispersible, superparamagnetic iron oxide nanoparticles hermetically coated with silica to retain full magnetization performance. Iron oxide particles were produced by flame spray pyrolysis of iron acetylacetonate in xylene/acetonitrile solutions and the resulting aerosol was in situ coated with silicon dioxide by oxidation of swirling hexamethlydisiloxane vapor. The process allows independent control of the core Fe2O3 (maghemite) particle properties and the thickness of their silica coating film. This ensures that the nonmagnetic SiO2 layer can be closely controlled and minimized. The optimal SiO2 content for complete (hermetic) encapsulation of the magnetic core particles was determined by isopropanol chemisorption. The magnetization of Fe 2O3 coated with about 2 nm thin SiO2 layers was nearly identical to that of uncoated, pure Fe2O3 nanoparticles. © 2009 American Chemical Society.
Resumo:
The results of a finite element computer modelling analysis of a micro-manufactured one-turn magnetic inductor using the software package ANSYS 10.0 are presented. The inductor is designed for a DC-DC converter used in microelectronic devices. It consists of a copper conductor with a rectangular cross-section plated with an insulation layer and a layer of magnetic core. The analysis has focused on the effects of the frequency and the air gaps on the on the inductance values and the Joule losses in the core and conductor. It has been found that an inductor with small multiple air gaps has lower losses than an inductor with a single larger gap