968 resultados para Magnetic coercive field


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Capacitance-voltage (C-V) characteristics of lead zirconate titanate (PZT) thin films with a thickness of 130 nm were measured between 300 and 533 K. The transition between ferroelectric and paraelectric phases was revealed to be of second order in our case, with a Curie temperature at around 450 K. A linear relationship was found between the measured capacitance and the inverse square root of the applied voltage. It was shown that such a relationship could be fitted well by a universal expression of C/A = k(V+V(0))(-1/2) and that this expression could be derived by expanding the Landau-Devonshire free energy at an effective equilibrium position of the Ti/Zr ion in a PZT unit cell. By using the derived equations in this work, the free energy parameters for an individual material can be obtained solely from the corresponding C-V data, and the temperature dependences of both remnant polarization and coercive voltage are shown to be in quantitative agreement with the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work we construct coherent states in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kinds of coherent states, those which correspond to classical trajectories which embrace the solenoid and those which do not. The constructed coherent states reproduce exactly classical trajectories, maintain their form under the time evolution and form a complete set of functions, which can be useful in semiclassical calculations. In the absence of the solenoid field these states are reduced to the well known in the case of uniform magnetic field Malkin-Man`ko coherent states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various Green functions of the Dirac equation with a magnetic-solenoid field (the superposition of the Aharonov-Bohm field and a collinear uniform magnetic field) are constructed and studied. The problem is considered in 2+1 and 3+1 dimensions for the natural extension of the Dirac operator (the extension obtained from the solenoid regularization). Representations of the Green functions as proper time integrals are derived. The nonrelativistic limit is considered. For the sake of completeness the Green functions of the Klein-Gordon particles are constructed as well. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper completes our study of coherent states in the so-called magnetic-solenoid field (a collinear combination of a constant uniform magnetic field and Aharonov-Bohm solenoid field) presented in Bagrov et al (2010 J. Phys. A: Math. Theor. 43 354016, 2011 J. Phys. A: Math. Theor. 44 055301). Here, we succeeded in proving nontrivial completeness relations for non-relativistic and relativistic coherent states in such a field. In addition, we solve here the relevant Stieltjes moment problem and present a comparative analysis of our coherent states and the well-known, in the case of pure uniform magnetic field, Malkin-Man'ko coherent states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID) technology (NFC). The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient?s dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system?s operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was recently suggested that the magnetic field created by the current of a bare tether strongly reduces its own electron-collection capability when a magnetic separatrix disconnecting ambient magnetized plasma from tether extends beyond its electric sheath. It is here shown that current reduction by the self-field depends on the ratio meterizing bias and current profiles along the tether (Lt tether length, characteristic length gauging ohmic effects) and on a new dimensionless number Ks involving ambient and tether parameters. Current reduction is weaker the lower Ks and L*/ Lt, which depend critically on the type of cross section: Ks varies as R5/3, h2/3R, and h2/3 1/4 width for wires, round tethers conductive only in a thin layer, and thin tapes, respectively; L* varies as R2/3 for wires and as h2/3 for tapes and round tethers conductive in a layer (R radius, h thickness). Self-field effects are fully negligible for the last two types of cross sections whatever the mode of operation. In practical efficient tether systems having L*/Lt low, maximum current reduction in case of wires is again negligible for power generation; for deorbiting, reduction is <1% for a 10 km tether and 15% for a 20 km tether. In the reboost mode there are no effects for Ks below some threshold; moderate effects may occur in practical but heavy reboost-wire systems that need no dedicated solar power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been recently suggested that the magnetic field created by the current in a bare tether could sensibly reduce its electron collection capability in the magnetised ionosphere, a region of closed magnetic surfaces disconnecting the cylinder from infinity. In this paper, the ohmic voltage drop along the tether is taken into account in considering self-field effects. Separate analyses are carried out for the thrust and power generation and drag modes of operation, which are affected in different ways. In the power generation and drag modes, bias decreases as current increases along the tether, starting at the anodic, positively-biased end (upper end in the usual, eastward-flying spacecraft); in the thrust mode of operation, bias increases as current increases along the tether, starting at the lower end. When the ohmic voltage drop is considered, self-field effects are shown to be weak, in all cases, for tape tethers, and for circular cross-section tethers just conductive in a thin outer layer. Self-field effects might become important, in the drag case only, for tethers with fully conductive cross sections that are unrealistically heavy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the magnetoelectric coupling (ME) at room temperature in lanthanum modified bismuth ferrite thin film (BLFO) deposited on SrRuO 3-buffered Pt/TiO 2/SiO 2/Si(100) substrates by the soft chemical method. BLFO film was coherently grown at a temperature of 500 °C. The magnetoelectric coefficient measurement was performed to evidence magnetoelectric coupling behavior. Room temperature magnetic coercive field indicates that the film is magnetically soft. The maximum magnetoelectric coefficient in the longitudinal direction was close to 12 V/cmOe. Dielectric permittivity and dielectric loss demonstrated only slight dispersion with frequency due the less two-dimensional stress in the plane of the film. Polarization reversal was investigated by applying dc voltage through a conductive tip during the area scanning. We observed that various types of domain behavior such as 71 ° and 180° domain switching, and pinned domain formation occurred. Copyright © 2009 American Scientific Publishers All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)