992 resultados para Magnetic characterization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several high temperature superconductor (HTS) tapes have been developed since the late eighties. Due to the new techniques applied for their production, HTS tapes are becoming feasible and practical for many applications. In this work, we present the test results of five commercial HTS tapes from the BSCCO and YBCO families (short samples of 200 mm). We have measured and analyzed their intrinsic and extrinsic properties and compared their behaviors for fault current limiter (FCL) applications. Electrical measurements were performed to determine the critical current and the n value through the V-I relationship under DC and AC magnetic fields. The resistance per unit length was determined as a function of temperature. The magnetic characteristics were analyzed through susceptibility curves as a function of temperature. As transport current generates a magnetic field surrounding the HTS material, the magnetic measurements indicate the magnetic field supported by the tapes under a peak current 1.5 times higher than the critical current, I(c). By pulsed current tests the recovery time and the energy/volume during a current fault were also analyzed. These results are in agreement with the data found in the literature giving the most appropriate performance conductor for a FCL device (I(peak) = 4 kA) to be used in a 220 V-60 Hz grid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the Mn(5)Si(3) and Mn(5)SiB(2) phases were produced via arc melting and heat treatment at 1000 degrees C for 50 h under argon. A detailed microstructure characterization indicated the formation of single-phase Mn(5)Si(3) and near single-phase Mn(5)SiB(2) microstructures. The magnetic behavior of the Mn(5)Si(3) phase was investigated and the results are in agreement with previous data from the literature, which indicates the existence of two anti-ferromagnetic structures for temperatures below 98 K. The Mn(5)SiB(2) phase shows a ferromagnetic behavior presenting a saturation magnetization M(s) of about 5.35 x 10(5) A/m (0.67 T) at room temperature and an estimated Curie temperature between 470 and 490 K. In addition, AC susceptibility data indicates no evidence of any other magnetic ordering in 4-300 K temperature range. The magnetization values are smaller than that calculated using the magnetic moment from previous literature NMR results. This result suggests a probable ferrimagnetic arrangement of the Mn moments. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biocompatible superparamagnetic iron oxide nanoparticles of magnetite coated with dextran were magnetically characterized using the techniques of SQUID (superconducting quantum interference device) magnetometry and ferromagnetic resonance (FMR). The SQUID magnetometry characterization was performed by isothermal measurements under applied magnetic field using the methods of zero-field-cooling (ZFC) and field-cooling (FC). The magnetic behavior of the nanoparticles indicated their superparamagnetic nature and it was assumed that they consisted exclusively of monodomains. The transition to a blocked state was observed at the temperature T(B) = (43 +/- 1) K for frozen ferrofluid and at (52 +/- 1) K for the lyophilized ferrofluid samples. The FMR analysis showed that the derivative peak-to-peak linewidth (Delta H(PP)), gyromagnetic factor (g), number of spins (N(S)), and spin-spin relaxation time (T(2)) were strongly dependent on both temperature and super-exchange interaction. This information is important for possible nanotechnological applications, mainly those which are strongly dependent on the magnetic parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic aluminum-substituted maghemites were characterized by total chemical analysis, powder X-ray diffraction (XRD), Mössbauer spectroscopy (ME), and vibrating sample magnetometry (VSM). The aim was to determine the structural, magnetic, and hyperfine properties of γ-Fe2-xAl xO3 as the Al concentration is varied. The XRD results of the synthetic products were indexed exclusively as maghemite. Increasing Al for Fe substitution decreased the mean crystalline dimension and shifted all diffraction peaks to higher º2θ angles. The a0 dimension of the cubic unit cell decreased with increasing Al according to the equation a o = 0.8385 - 3.63 x 10-5 Al (R²= 0.94). Most Mössbauer spectra were composed of one sextet, but at the highest substitution rate of 142.5 mmol mol-1 Al, both a doublet and sextet were obtained at 300 K. All hyperfine parameters from the sub-spectra were consistent with high-spin Fe3+ (0.2 a 0.7 mms-1) and suggested a strong superparamagnetic component associated with the doublet. The magnetic hyperfine field of the sextets decreased with the amount of Al-substitution [Bhf (T) = 49.751 - 0.1202Al; R² = 0.94] while the linewidth increased linearly. The saturation magnetization also decreased with increasing isomorphous substitution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rietveld profile‐analysis method is used to investigate the x‐ray diffraction pattern of lithiated Fe3O4. It is shown that, after exposure to air, pure magnetite coexists with a lithium‐inserted LixFe3O4 phase. The Mössbauer spectra at 300 and 4.2 K have been used to estimate the lithium content of the sample, the pure magnetite concentration, and the iron distribution over the available 16c and 16d sites of the spinel structure. Magnetization measurements from 4.2 to 120 K with an external magnetic field up to 150 kOe have been used to obtain the saturation magnetic moment, the magnetic anisotropy constants, and the susceptibility. It is concluded that a noncollinear spin structure should be present in Li0.5Fe3O4. These results indicate that there is no room‐temperature extrusion of iron even for x→2.0, but that on exposure to air LixFe3O4 samples with x>0.5 are oxidized at room temperature by delithiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a detailed study on the morphology and magnetic properties of Co nanostructures deposited onto oxidized Si substrates by femtosecond pulsed laser deposition. Generally, Co disks of nanometric dimensions are obtained just above the ablation threshold, with a size distribution characterized by an increasingly larger number of disks as their size diminishes, and with a maximum disk size that depends on the laser power density. In Au/Co/Au structures, in-plane magnetic anisotropy is observed in all cases, with no indication of superparamagnetism regardless of the amount of material or the laser power density. Magnetic force microscopy observations show coexistence of single-domain and vortex states for the magnetic domain structure of the disks. Superconducting quantum interference device magnetometry and x-ray magnetic circular dichroism measurements point to saturation magnetization values lower than the bulk, probably due to partial oxidation of the Co resulting from incomplete coverage by the Au capping layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the formation of ferrihydrite nanoparticles (NPs) by hydrolysis of the Fe(III) alkoxide Fe(O(t)Bu)(3). Controlled amounts of water, up to 3.0 vol%, were added to the precursor solution yielding a series of hydrolyzed samples ranging from P0.0 (the unreacted precursor) to P3.0. X-ray diffraction (XRD) analysis evidenced the formation of high-crystalline ferrihydrite NP in sample P3.0, with grain size estimate of about 3.2 nm. The transition from the molecular precursor to the formation of crystalline magnetic NPs was followed through magnetization measurements M(T) and M(H), as well as Mossbauer spectroscopy (MS). M(T) measurements indicate a paramagnetic (PM) behavior for sample P0.0, characteristic of binuclear Fe-O-Fe units, which evolves to a superparamagnetic (SPM) behavior, with an energy barrier for the blocking process estimated for sample P3.0 as E(a) = 4.9 x 10(-21) J (E(a)/k(B) = 355 K), resulting in a high effective anisotropy constant K(eff) = 290 kJ/m(3). Magnetization loops at 5 K progressively change from PM-like to ferromagnetic-like shape upon increasing the hydrolysis process, although hysteresis (H(c) approximate to 500 Oe) only is apparent for P2.0 and higher. MS spectra at room temperature are PM/SPM doublets for all samples, while the MS spectra at T = 4.2 K reveal increasingly well-defined magnetic ordering as hydrolysis of the precursor stepwise progresses until well-crystallized ferrihydrite particles are formed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new quaternary intermetallic borocarbide TmCo(2)B(2)C has been synthesized via rapid-quench of an arc-melted ingot. Elemental and powder-diffraction analyses established its correct stoichiometry and single-phase character. The crystal structure is isomorphous with that of TmNi(2)B(2)C (I4/mmm) and is stable over the studied temperature range. Above 7 K, the paramagnetic state follows modified Curie-Weiss behavior (chi = C/(T - theta) + chi(0)) wherein chi(0) = 0.008(1) emu mol(-1) with the temperature-dependent term reflecting the paramagnetism of the Tm subsystem: mu(eff) = 7.6(2) mu(B) (in agreement with the expected value for a free Tm(3+) ion) and theta = -4.5(3) K. Long-range ferromagnetic order of the Tm sublattice is observed to develop around similar to 1 K. No superconductivity is detected in TmCo(2)B(2)C down to 20 mK, a feature which is consistent with the general trend in the RCo(2)B(2)C series. Finally, the influence of the rapid-quench process on the magnetism (and superconductivity) of TmNi(2)B(2)C will be discussed and compared to that of TmCo(2)B(2)C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural and magnetic properties of the cubic spinel oxide Co 2MnO4 (Fd3m space group) doped with different concentrations of bismuth, were investigated by X-ray diffraction and SQUID magnetometry. The Bi3+ ions entering into the CoIII octahedral sites do not alter the effective moment, μeff ∼8.2 μB, whereas both the magnetization M50 kOe at the highest field (50 kOe) and the field-cooled MFC magnetizations increased when increasing the Bi content. The ferrimagnetic character of the parent compound, Co2MnO4, is maintained for all materials although the antiferromagnetic interactions Co2+-Co2+ are affected, resulting in higher values of the Curie-Weiss temperature. Due to the large ionic radius of Bi, octahedra distortions occur as well as valence fluctuations of the Mn ions, giving rise to Jahn-Teller effects and enhancing the exchange interactions. The off-center Bi3+ ion is responsible of non-centrosymmetric charge ordering and should lead to multiferroïsme conditions for the BixCo2-xMnO4 material. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a method to order low temperature (LT) self-assembled ferromagnetic In1-xMnxAs quantum dots (QDs) grown by molecular beam epitaxy (MBE). The ordered In1-xMnxAs QDs were grown on top of a non-magnetic In0.4Ga0.6As/GaAs(100) QDs multi-layered structure. The modulation of the chemical potential, due to the stacking, provides a nucleation center for the LT In1-xMnxAs QDs. For particular conditions, such as surface morphology and growth conditions, the In1-xMnxAs QDs align along lines like chains. This work also reports the characterization of QDs grown on plain GaAs(100) substrates, as well as of the ordered structures, as function of Mn content and growth temperature. The substitutional Mn incorporation in the InAs lattice and the conditions for obtaining coherent and incoherent structures are discussed from comparison between Raman spectroscopy and x-ray analysis. Ferromagnetic behavior was observed for all structures at 2K. We found that the magnetic moment axis changes from [110] in In1-xMnxAs over GaAs to [1-10] for the ordered In1-xMnxAs grown over GaAs template. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4745904]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the synthesis (chemical co-precipitation reaction) and characterization (X-ray diffraction, magnetization, and electron paramagnetic resonance) of nanosized Cd1-xMnxS particles with manganese concentration up to x = 0.73. Though the literature reports that nanosized (bulk) CdS can incorporate as much as 30% (50%) of manganese ion within its crystal structure we found manganese segregation at the nanoparticle surface at doping levels as low as 14%. We found that both XRD and magnetization data support the presence of the Mn3O4 phase (observed spin-glass transition around 43 K) at the high manganese doping levels whereas the EPR data strongly suggest preferential incorporation of manganese at the nanoparticle's surface, even at low manganese doping levels. Analyses of the experimental data strongly suggest the preparation of well-defined core/shell (Cd1-xMnxS/Mn3O4) structures at higher levels of manganese doping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted an integrated paleomagnetic and rock magnetic study on cores recovered from Ocean Drilling Program Sites 1276 and 1277 of the Newfoundland Basin. Stable components of magnetization are determined from Cretaceous-aged sedimentary and basement cores after detailed thermal and alternating-field demagnetization. Results from a series of rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier. In view of the normal polarity of magnetization and radiometric dates for the sills at Site 1276 (~98 and ~105 Ma, both within the Cretaceous Normal Superchron) and for a gabbro intrusion in peridotite at Site 1277 (~126 Ma, Chron M1), our results suggest that the primary magnetization of the Cretaceous rocks is likely retained in these rocks. The overall magnetic inclination of lithologic Unit 2 in Hole 1277A between 143 and 180 meters below seafloor is 38°, implying significant (~35° counterclockwise, viewed to the north) rotation of the basement around a horizontal axis parallel to the rift axis (010°). The paleomagnetic rotational estimates should help refine models for the tectonic evolution of the basement. The mean inclinations for Sites 1276 and 1277 rocks imply paleolatitudes of 30.3° ± 5.1° and 22.9° ± 12.0°, respectively, with the latter presumably influenced by tectonic rotation. These values are consistent with those inferred from the mid-Cretaceous reference poles for North America, suggesting that the inclination determinations are reliable and consistent with a drill site on a location in the North America plate since at least the mid-Cretaceous. The combined paleolatitude results from Leg 210 sites indicate that the Newfoundland Basin was some 1800 km south of its current position in the mid-Cretaceous. Assuming a constant rate of motion, the paleolatitude data would suggest a rate of 12.1 mm/yr for the interval from ~130 Ma (Site 1276 age) to present, and 19.6 mm/yr for the interval from 126 Ma (Site 1277 age) to recent. The paleolatitude and rotational data from this study are consistent with the possibility that Site 1276 may have passed over the Canary and Madeira hotspots that formed the Newfoundland Seamounts in the mid-Cretaceous.