1000 resultados para Magnetic Schrödinger Operators


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we extend the well-known Leinfelder–Simader theorem on the essential selfadjointness of singular Schrödinger operators to arbitrary complete Riemannian manifolds. This improves some earlier results of Shubin, Milatovic and others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First, we assume that the electric potentials are dilation-analytic with respect to the variable along the magnetic field, and obtain an asymptotic expansion of the resonances as the coupling constant ϰ of the perturbation tends to zero. Further, under the assumption that the Fermi Golden Rule holds true, we deduce estimates for the time evolution of the resonance states with and without analyticity assumptions; in the second case we obtain these results as a corollary of suitable Mourre estimates and a recent article of Cattaneo, Graf and Hunziker [11]. Next, we describe sets of perturbations V for which the Fermi Golden Rule is valid at each embedded eigenvalue of H; these sets turn out to be dense in various suitable topologies. Finally, we assume that V decays fast enough at infinity and is of definite sign, introduce the Krein spectral shift function for the operator pair (H+V, H), and study its singularities at the energies which coincide with eigenvalues of infinite multiplicity of the unperturbed operator H.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 35P20, 35J10, 35Q40.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi ripercorre i procedimenti utilizzati per il calcolo dell'asintotica dello splitting dell'operatore puramente magnetico di Schrödinger nel limite semiclassico (con campo magnetico costante) in un dominio aperto limitato e semplicemente connesso il cui bordo ha simmetria assiale ed esattamente due punti di curvatura massima non degeneri. Il punto di partenza è trovare stime a priori sulle sue autofunzioni, che permettono di dire che sono localizzate esponenzialmente vicino al bordo del dominio in oggetto, grazie a queste stime di riesce a modificare l'operatore in maniera tale che l'asintotica dello splitting rimanga equivalente. Si passa in seguito a coordinate tubulari, quindi si rettifica il borso del dominio, andando però a complicare il potenziale magnetico. Si ottengono nuove stime a priori per le autofunzioni. A questo punto si considera lo stesso operatore differenziale ma su un dominio modificato, in cui viene eliminato uno dei punti di curvatura massima. Per tale operatore si ha uno sviluppo asintotico delle autofunzioni (anche dette soluzioni WKB). Si utilizzano poi strumenti di calcolo pseudo-differenziale per studiare l'operatore nel nuovo dominio, ne si localizza la fase per renderlo limitato ed ottenere così una parametrice (anch'essa limitata) avente un simbolo esplicito. Se ne deducono stime di tipo ellittico che possono essere portate all'operatore senza la fase localizzata aggiungendo dei termini di errore. Grazie queste stime si riesce ad approssimare lo splitting (controllando sempre l'errore) che volevamo calcolare (quello dell'operatore sul dominio con due punti di curvatura massima) tramite le autofunzioni dell'operatore sul dominio con un solo punto di curvatura massima, e per queste autofunzioni abbiamo lo sviluppo asintotico (WKB). Considerando l'ordine principale di questi sviluppi si riesce a calcolare esplicitamente il termine dominante dello splitting, ottenendone così l'asintotica nel limite semiclassico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we review first some of the possibilities in which the notions of Fo lner sequences and quasidiagonality have been applied to spectral approximation problems. We construct then a canonical Fo lner sequence for the crossed product of a concrete C* -algebra and a discrete amenable group. We apply our results to the rotation algebra (which contains interesting operators like almost Mathieu operators or periodic magnetic Schrödinger operators on graphs) and the C* -algebra generated by bounded Jacobi operators.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the first half of this memoir we explore the interrelationships between the abstract theory of limit operators (see e.g. the recent monographs of Rabinovich, Roch and Silbermann (2004) and Lindner (2006)) and the concepts and results of the generalised collectively compact operator theory introduced by Chandler-Wilde and Zhang (2002). We build up to results obtained by applying this generalised collectively compact operator theory to the set of limit operators of an operator (its operator spectrum). In the second half of this memoir we study bounded linear operators on the generalised sequence space , where and is some complex Banach space. We make what seems to be a more complete study than hitherto of the connections between Fredholmness, invertibility, invertibility at infinity, and invertibility or injectivity of the set of limit operators, with some emphasis on the case when the operator is a locally compact perturbation of the identity. Especially, we obtain stronger results than previously known for the subtle limiting cases of and . Our tools in this study are the results from the first half of the memoir and an exploitation of the partial duality between and and its implications for bounded linear operators which are also continuous with respect to the weaker topology (the strict topology) introduced in the first half of the memoir. Results in this second half of the memoir include a new proof that injectivity of all limit operators (the classic Favard condition) implies invertibility for a general class of almost periodic operators, and characterisations of invertibility at infinity and Fredholmness for operators in the so-called Wiener algebra. In two final chapters our results are illustrated by and applied to concrete examples. Firstly, we study the spectra and essential spectra of discrete Schrödinger operators (both self-adjoint and non-self-adjoint), including operators with almost periodic and random potentials. In the final chapter we apply our results to integral operators on .

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dans cette thèse, nous étudions les fonctions propres de l'opérateur de Laplace-Beltrami - ou simplement laplacien - sur une surface fermée, c'est-à-dire une variété riemannienne lisse, compacte et sans bord de dimension 2. Ces fonctions propres satisfont l'équation $\Delta_g \phi_\lambda + \lambda \phi_\lambda = 0$ et les valeurs propres forment une suite infinie. L'ensemble nodal d'une fonction propre du laplacien est celui de ses zéros et est d'intérêt depuis les expériences de plaques vibrantes de Chladni qui remontent au début du 19ème siècle et, plus récemment, dans le contexte de la mécanique quantique. La taille de cet ensemble nodal a été largement étudiée ces dernières années, notamment par Donnelly et Fefferman, Colding et Minicozzi, Hezari et Sogge, Mangoubi ainsi que Sogge et Zelditch. L'étude de la croissance de fonctions propres n'est pas en reste, avec entre autres les récents travaux de Donnelly et Fefferman, Sogge, Toth et Zelditch, pour ne nommer que ceux-là. Notre thèse s'inscrit dans la foulée du travail de Nazarov, Polterovich et Sodin et relie les propriétés de croissance des fonctions propres avec la taille de leur ensemble nodal dans l'asymptotique $\lambda \nearrow \infty$. Pour ce faire, nous considérons d'abord les exposants de croissance, qui mesurent la croissance locale de fonctions propres et qui sont obtenus à partir de la norme uniforme de celles-ci. Nous construisons ensuite la croissance locale moyenne d'une fonction propre en calculant la moyenne sur toute la surface de ces exposants de croissance, définis sur de petits disques de rayon comparable à la longueur d'onde. Nous montrons alors que la taille de l'ensemble nodal est contrôlée par le produit de cette croissance locale moyenne et de la fréquence $\sqrt{\lambda}$. Ce résultat permet une reformulation centrée sur les fonctions propres de la célèbre conjecture de Yau, qui prévoit que la mesure de l'ensemble nodal croît au rythme de la fréquence. Notre travail renforce également l'intuition répandue selon laquelle une fonction propre se comporte comme un polynôme de degré $\sqrt{\lambda}$. Nous généralisons ensuite nos résultats pour des exposants de croissance construits à partir de normes $L^q$. Nous sommes également amenés à étudier les fonctions appartenant au noyau d'opérateurs de Schrödinger avec petit potentiel dans le plan. Pour de telles fonctions, nous obtenons deux résultats qui relient croissance et taille de l'ensemble nodal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis deals with three different physical models, where each model involves a random component which is linked to a cubic lattice. First, a model is studied, which is used in numerical calculations of Quantum Chromodynamics.In these calculations random gauge-fields are distributed on the bonds of the lattice. The formulation of the model is fitted into the mathematical framework of ergodic operator families. We prove, that for small coupling constants, the ergodicity of the underlying probability measure is indeed ensured and that the integrated density of states of the Wilson-Dirac operator exists. The physical situations treated in the next two chapters are more similar to one another. In both cases the principle idea is to study a fermion system in a cubic crystal with impurities, that are modeled by a random potential located at the lattice sites. In the second model we apply the Hartree-Fock approximation to such a system. For the case of reduced Hartree-Fock theory at positive temperatures and a fixed chemical potential we consider the limit of an infinite system. In that case we show the existence and uniqueness of minimizers of the Hartree-Fock functional. In the third model we formulate the fermion system algebraically via C*-algebras. The question imposed here is to calculate the heat production of the system under the influence of an outer electromagnetic field. We show that the heat production corresponds exactly to what is empirically predicted by Joule's law in the regime of linear response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We construct all self-adjoint Schrodinger and Dirac operators (Hamiltonians) with both the pure Aharonov-Bohm (AB) field and the so-called magnetic-solenoid field (a collinear superposition of the AB field and a constant magnetic field). We perform a spectral analysis for these operators, which includes finding spectra and spectral decompositions, or inversion formulae. In constructing the Hamiltonians and performing their spectral analysis, we follow, respectively, the von Neumann theory of self-adjoint extensions of symmetric operators and the Krein method of guiding functionals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This prospective study compares repetitive thick-slab single-shot projection magnetic resonance cholangiopancreatography (MRCP) with endoscopic ultrasonography (EUS) for the detection of choledocholithiasis. Fifty-seven consecutive patients (36 women, mean age 61) referred for suspected choledocholithiasis underwent MRCP, followed by EUS. Each procedure was performed by different operators blinded to the results of the other investigation. MR technique included a turbo spin-echo T2-weighted axial sequence with selective fat saturation (SPIR/TSE, TE=70 ms, TR=1,600 ms), followed by coronal dynamic MRCP. The same thick-slab slice was sequentially acquired 12 times as breath-hold single-shot projection imaging (SSh, TE=900 ms, TE=8,000 ms) centred on the common bile duct (CBD). Two experienced radiologists independently and blindly evaluated MR images for the detection of CBD stones. Their inter-observer agreement kappa was determined. Secondly, the two observers read MR images in consensus again. CBD stones were demonstrated in 18 out of 57 patients (31.6 %) and confirmed by endoscopic retrograde cholangiography (ERCP, n=17) or intraoperative cholangiography (n=1). Clinical follow-up served as the "gold standard" in patients with negative results without following invasive procedure (n=28). Sensitivity, specificity, accuracy, positive and negative predictive value for MRCP resulting from consensus reading were 94.9%, 94.4%, 94.7%, 97.4% and 89.5%, respectively. Corresponding values of EUS were 97.4%, 94.4%, 96.5%, 97.4% and 94.4%. Inter-observer agreement kappa was 0.81. Repetitive thick-slab single-shot projection MRCP is an accurate non-invasive imaging modality for suspected choledocholithiasis and should be increasingly used to select those patients who require a subsequent therapeutic procedure, namely ERCP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starting from a phenomenological Hamiltonian originally written in terms of angular momentum operators we derive a new quantum angle-based Hamiltonian that allows for a discussion on the quantum spin tunneling. The study of the applicability of the present approach, carried out in calculations with a soluble quasi-spin model, shows that we are allowed to use our method in the description of physical systems such as the Mn12-acetate molecule, as well as the octanuclear iron cluster, Fe8, in a reliable way. With the present description the interpretation of the spin tunneling is seen to be direct, the spectra and energy barriers of those systems are obtained, and it is shown that they agree with the experimental ones. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The von Neumann-Liouville time evolution equation is represented in a discrete quantum phase space. The mapped Liouville operator and the corresponding Wigner function are explicitly written for the problem of a magnetic moment interacting with a magnetic field and the precessing solution is found. The propagator is also discussed and a time interval operator, associated to a unitary operator which shifts the energy levels in the Zeeman spectrum, is introduced. This operator is associated to the particular dynamical process and is not the continuous parameter describing the time evolution. The pair of unitary operators which shifts the time and energy is shown to obey the Weyl-Schwinger algebra. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general form for ladder operators is used to construct a method to solve bound-state Schrödinger equations. The characteristics of supersymmetry and shape invariance of the system are the start point of the approach. To show the elegance and the utility of the method we use it to obtain energy spectra and eigenfunctions for the one-dimensional harmonic oscillator and Morse potentials and for the radial harmonic oscillator and Coulomb potentials.