997 resultados para Magnetic Nanosized Spinel Oxides
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
It is crucial to develop a catalyst made of earth-abundant elements highly active for a complete oxidation of methane at a relatively low temperature. NiCo2O4 consisting of earth-abundant elements which can completely oxidize methane in the temperature range of 350-550 °C. Being a cost-effective catalyst, NiCo2O4 exhibits activity higher than precious-metal-based catalysts. Here we report that the higher catalytic activity at the relatively low temperature results from the integration of nickel cations, cobalt cations and surface lattice oxygen atoms/oxygen vacancies at the atomic scale. In situ studies of complete oxidation of methane on NiCo2O4 and theoretical simulations show that methane dissociates to methyl on nickel cations and then couple with surface lattice oxygen atoms to form -CH3O with a following dehydrogenation to -CH2O; a following oxidative dehydrogenation forms CHO; CHO is transformed to product molecules through two different sub-pathways including dehydrogenation of OCHO and CO oxidation.
Studies on the structural, electrical and magnetic properties of composites based on spinel ferrites
Resumo:
This thesis mainly deals with the preparation and studies on magnetic composites based on spinel ferrites prepared both chemically and mechanically. Rubber ferrite composites (RFC) are chosen because of their mouldability and flexibility and the ease with which the dielectric and magnetic properties can be manipulated to make them as useful devices. Natural rubber is chosen as the Matrix because of its local availability and possible value addition. Moreover, NR represents a typical unsaturated nonpolar matrix. The work can be thought of as two parts. Part l concentrates on the preparation and characterization of nanocomposites based on y-Fe203. Part 2 deals with the preparation and characterization of RFCs containing Nickel zinc ferrit In the present study magnetic nanocomposites have been prepared by ionexchange method and the preparation conditions have been optimized. The insitu incorporation of the magnetic component is carried out chemically. This method is selected as it is the easiest and simplest method for preparation of nanocomposite. Nanocomposite samples thus prepared were studied using VSM, Mossbauer spectroscopy, Iron content estimation, and ESR spectroscopy. For the preparation of RFCs, the filler material namely nickel zinc ferrite having the general formula Ni)_xZnxFez04, where x varies from 0 to 1 in steps of 0.2 have been prepared by the conventional ceramic techniques. The system of Nil_xZn"Fe204 is chosen because of their excellent high frequency characteristics. After characterization they are incorporated into the polymer matrix of natural rubber by mechanical method. The incorporation is done according to a specific recipe and for various Loadings of magnetic fillers and also for all compositions. The cure characteristics, magnetic properties and dielectric properties of these composites are evaluated. The ac electrical conductivity of both ceramic nickel zinc ferrites and rubber ferrite composites are also calculated using a simple relation. The results are correlated.
Resumo:
Magnetic properties of two spinel oxides solid solutions, Cul+xMn2-xO4 and Ni1+xMn2-xO4 are reported. These series are characterized by two magnetic transitions: the upper one, of ferrimagnetic type, occurs at about 85 K (for copper-based) and at 105-110 K (for nickel-based spinels), independently of the x-content: the lower transition may be related to a Neel-type collinear ordering and takes place at 30 and 45 K, respectively. Application of moderate fields (H > 250 Oe) make both transitions to merge into one broad maximum in the magnetization, which takes place at lower temperature when applying larger fields. Magnetization cycles with temperature (ZFC/FC) or field (loops) allowed us to well characterize the ordered state. The effective moment follows the expected behavior when manganese ions are being substituted by ions of lower magnetic moment (Ni(2+)andCU(2+)). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Os resultados apresentados aqui foram alcançados no âmbito do programa de doutoramento intitulado “Impurezas Magnéticas em Materiais Nanoestruturados”. O objectivo do estudo foi a síntese e caracterização de óxido contendo impurezas magnéticas. Durante este trabalho, sínteses de sol-gel não-aquoso têm sido desenvolvidos para a síntese de óxidos dopados com metais de transição (ZnO e ZrO2). A dopagem uniforme é particularmente importante no estudo de semicondutores magnéticos diluídos (DMSs) e o ponto principal deste estudo foi verificar o estado de oxidação e a estrutura local do dopante e para excluir a existência de uma fase secundária como a origem do ferromagnetismo. Para alargar o âmbito da investigação e explorar plenamente o conceito de "impurezas magnéticas em materiais nanoestruturados" estudamos as propriedades de nanopartículas magnéticas dispersas em uma matriz de óxido. As nanopartículas (ferrita de cobalto) foram depositadas como um filme e cobertas com um óxido metálico semicondutor ou dielétrico (ZnO, TiO2). Estes hetero-sistemas podem ser considerados como a dispersão de impurezas magnéticas em um óxido. As caracterizações exigidas por estes nanomateriais têm sido conduzidas na Universidade de Aveiro e Universidade de Montpellier, devido ao equipamento complementar.
Resumo:
The relation between the composition and electronic structure of the perfectly inverse spinel compound Zn7-xMxSb2O12 (M = Ni and Co) has been studied by powder X-ray diffraction and X-ray photoelectron spectroscopy. Changes in the site occupancy are associated with shifts in the core levels as observed in the core level spectral analyses. The configuration of the density of states in the valence band due to the Co and Ni states can be observed in the valence band spectra. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This work involved the synthesis and characterization of Cu0.5Zn0.5Fe2O4 ferrite powders prepared by combustion reaction for use as soft magnetic materials. The powders were characterized by nitrogen adsorption (BET), XRD, Rietveld refinement, SEM, TEM and magnetic measures. The results indicate that the combustion reaction yielded crystalline powders containing spinel ferrite as the primary phase and traces of Fe2O3 as secondary phase. The crystallite size and lattice microdeformation calculated from Rietveld refinements were 36 and 0.24 nm, respectively. The micrographic analysis revealed particles smaller than 100 nm and fine particle agglomerates. The particles were approximately spherical and their size, calculated by TEM, was 29 nm. The magnetic parameters indicated that the Cu-Zn ferrite powders presented closed hysteresis loops and soft magnetic properties. © (2012) Trans Tech Publications, Switzerland.
Resumo:
A new platform described as the liquid metal/metal oxide (LM/MO) framework is introduced. The constituent spherical structures of these frameworks are made of micro- to nanosized liquid metal spheres and nanosized metal oxides, combining the advantages of both materials. It is shown that the diameters of the spheres and the stoichiometry of the structures can be actively controlled. Additionally, the liquid suspension of these spheres demonstrates tuneable plasmon resonances. These spherical structures are assembled to form LM/MO frameworks which are capable of demonstrating high sensitivity towards low concentrations of heavy metal ions, and enhanced solar light driven photocalalytic activities. These demonstrations imply that the LM/MO frameworks are a suitable candidate for the development of future high performance electronic and optical devices.
Resumo:
ZnF2, CdF2, and CUF2 have been adsorbed onto the surface of montmorillonite K10, and the infrared and 19F, 27 AI, and 29Si MAS NMR spectra of the reagents over a range of loadings have been obtained. CUF2 was observed to attack the Si02 layer and form the complex CuSiF6, Zn F2 tends to attack the aluminium oxide layer, in which Zn isomorphously replaces AI, and forms AIF3 and AIF4 - complexes. All the spectroscopic evidence ruled out the formation of any AI-F and/or Si-F free species as CdF2 is adsorbed on the surface of montmorillonite K10. The reactivity of MF2-K10 reagents towards Friedel-Crafts benzylation of benzene with benzyl chloride varied from one reagent to another. ZnF2-K10 was observed to be the most reactive and CUF2 was the least reactive.
Resumo:
Systematic studies in manganites of spinel structure have been undertaken. We report on the magnetic properties of two particular cases, in which one of the transition metals, Mg2+ is non-magnetic (NiMgxMn2-xO4) or presents a stable oxidation state, Cu2+ (CoxCuyMnzO4, x + y + z = 3). The magnetic behaviour is described with respect to varying contents of cobalt, copper or manganese. A ferrimagnetic transition is observed at 110-120 K, which depends on the cobalt content. Presence of copper increases the coercive field by a factor of ten with respect to the parent compound NiMn2O4. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
New materials, based on the well-known spinel compound NiMn 2O4, have been synthesized and characterized from the magnetic point of view. The manganese cation was partially substituted in the general formula NiMn2-xMexO4, by nonmagnetic and magnetic elements, such as Me = Ga, Zn, Ni and Cr (0 × 1). Prior to the determination of their magnetic properties, the non-substituted spinel NiMn2O4 was carefully characterized and studied as a function of the oxygen stoichiometry, based on the influence of the annealing atmosphere and quenching rate. The ferrimagnetic character was observed in all samples, with a paramagnetic-to-ferromagnetic transition temperature T c stabilized at 110 K, and well defined long-range antiferromagnetic interactions at lower temperatures, which depend on the applied field and the substitute concentration. © 2006 Sociedad Chilena de Química.
Resumo:
New A2+Mo4+O3 oxides for A = Mn, Co and Zn crystallizing in a defect spinel structure have been prepared by hydrogen-reduction of the corresponding AMoO4 oxides. X-ray powder diffraction intensity analysis of the zinc compound indicates that the cation distribution is (Zn)t[Zn1/3Mo4/3□1/3]oO4. The defect spinels are metastable decomposing to a mixture of A2Mo3O8 and AO at high temperatures. Electrical and magnetic properties of the spinel phases are reported.
Resumo:
A mixed-metal metal-organic framework (MOF) compound NiMn2{C6H3(COO)(3)}(2)], I, is prepared hydrothermally by replacing one of the octahedral Mn2+ ions in Mn-3{C6H3(COO)(3)}(2)] by Ni2+ ions. Magnetic studies on I suggest antiferromagnetic interactions with weak canted antiferromagnetism below 8 K. On heating in flowing air I transforms to NiMn2O4 spinel at low temperature (T < 400 degrees C). The thermal decomposition of I at different temperatures results in NiMn2O4 with particle sizes in the nano regime. The nanoparticle nature of NiMn2O4 was confirmed using PXRD and TEM studies. Magnetic studies on the nanoparticles of NiMn2O4 indicate ferrimagnetism. The transition temperature of NiMn2O4 nanoparticles exhibits a direct correlation with the particle size. This study highlights the usefulness of MOF compound as a single-source precursor for the preparation of important ceramic oxides with better control on the stoichiometry and particle size.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Zinc oxide (ZnO) that contains non-magnetic ionic dopants, such as nitrogen (N)-doped zinc oxide (ZnO:N), has been observed to exhibit ferromagnetism. Ferromagnetism is proposed to arise from the Coulomb excitation in the localized states that is induced by the oxygen vacancy, V O. A model based on the Coulomb excitation that is associated with the electron–phonon interaction theoretically explains the ferromagnetic mechanism of ZnO:N. This study reveals that the ferromagnetism will be induced by either deep localized states with a small V O concentration or shallow localized states with a high V O concentration. Additionally, electron–phonon coupling either suppresses the ferromagnetism that is induced by the deep donor states of V O or enhances the ferromagnetism that is induced by the shallow donor states of V O.