829 resultados para Magnesium diboride.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

High quality, micron-sized interpenetrating grains of MgB2 with high density are produced at low temperatures (~420oC < T < ~500oC) under autogenous pressure by pre-mixing Mg powder and NaBH4 and heating in an Inconel 601 alloy reactor for 5−15 hours. Optimum production of MgB2 with yields greater than 75% occurs for autogenous pressure in the range 1.0 MPa to 2.0 MPa with the reactor at ~500oC. Autogenous pressure is induced by the decomposition of NaBH4 in the presence of Mg and/or other Mg-based compounds. The morphology, transition temperature and magnetic properties of MgB2 are dependent on the heating regime. Significant improvement in physical properties accrues when the reactor temperature is held at 250oC for >20minutes prior to a hold at 500oC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Attention has recently focussed on MgB2 superconductors (Tc~39K) which can be formed into wires with high material density and viable critical current densities (Jc)1. However, broader utilisation of this diboride and many others is likely to occur when facile synthesis for bulk applications is developed. To date, common synthesis methods include high temperature sintering of mixed elemental powders2, combustion synthesis3, mechano-chemical mixing with high temperature sintering4 and high pressure (~GPa region) with high temperature. In this work, we report on a lower temperature, moderate (<4MPa) pressure method to synthesise metal diborides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that the well-known Kohn anomaly predicts Tc for ordered AlB2-type structures. We use ab initio Density Functional Theory to calculate phonon dispersions for Mg1-xAlxB2 compositions and identify a phonon anomaly with magnitude that predicts experimental values of Tc for all x. Key features of these anomalies correlate with the electronic structure of Mg1-xAlxB2. This approach predicts Tc for other known AlB2-type structures as well as new compositions. We predict that Mg0.5Ba0.5B2 will show Tc = 63.6 ± 6.6 K. Other forms of the Mg1-xBaxB2 series will also be superconductors when successfully synthesised. Our calculations predict that the end-member composition, BaB2, is likely to show a Tc significantly higher than currently achieved by other diborides although an applied pressure ~16 GPa may be required to stabilise the structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new procedure for the preparation of amorphous Ni-Co-B nanoparticles is reported, with a detailed investigation of their morphology by X-ray diffraction and transmission electron microscopy, as well as their magnetic properties. Many factors, such as chemical composition, anisotropy, size and shape of the particles, were controlled through chemical synthesis, resulting in the control of morphological and magnetic properties of the nanoparticles. Controlling pH values with ethylenediamine and using sodium dodecyl sulfate surfactant lowered the size of the nanoparticles to below 10 nm. Such a small structure and chemical disorder in nanocrystalline materials lead to magnetic properties that are different from those in their bulk-sized counterparts. The obtained nanoparticles can be used for different purposes, from pharmaceutical applications to implementations in different materials technology. The focus of this research is the synthesis of Ni-Co-B nanoparticles in a new way and studying the reaction of Ni-Co-B nanoparticles with Mg and B precursors and their effect on MgB2 properties. New nanostructures are formed in the reaction of Ni-Co-B nanoparticles with Mg: Mg2Ni, Co2Mg and possibly Mg2Co.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a new efficient numerical approach for representing anisotropic physical quantities and/or matrix elements defined on the Fermi surface (FS) of metallic materials. The method introduces a set of numerically calculated generalized orthonormal functions which are the solutions of the Helmholtz equation defined on the FS. Noteworthy, many properties of our proposed basis set are also shared by the FS harmonics introduced by Philip B Allen (1976 Phys. Rev. B 13 1416), proposed to be constructed as polynomials of the cartesian components of the electronic velocity. The main motivation of both approaches is identical, to handle anisotropic problems efficiently. However, in our approach the basis set is defined as the eigenfunctions of a differential operator and several desirable properties are introduced by construction. The method is demonstrated to be very robust in handling problems with any crystal structure or topology of the FS, and the periodicity of the reciprocal space is treated as a boundary condition for our Helmholtz equation. We illustrate the method by analysing the free-electron-like lithium (Li), sodium (Na), copper (Cu), lead (Pb), tungsten (W) and magnesium diboride (MgB2)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cheap to make and easy to shape, Magnesium Diboride (MgB2) throws the field of applied superconductivity wide open. Great efforts have been made to develop a super-conducting fault current limiter (SFCL) using MgB 2. With a superconducting transition temperature of 39 K, MgB 2 can be conveniently cooled with commercial cryocoolers. A cryogenic desktop test system, an ac pulse generation system and a real time data acquisition program in LabView/DAQmx were developed to investigate the quench behavior of MgB2 wires under pulse overcurrents at 25 K in self-field conditions. The experimental results on the current limitation behavior show the possibilities for using MgB2 for future SFCL applications. © 2007 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We prepared samples of MgB2 and ran sets of experiments aimed for investigation of superconducting properties under pressure. We found the value of pressure derivative of the transition temperature -1.2 ± 0.05 K/GPa. Then, using McMillan formula, we found that the main contribution to the change of the transition temperature under the pressure is due to the change in phonon frequencies. Griineisen parameter was calculated to be 7g = 2.4. Our results suggest that MgB2 is a conventional superconductor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study suggests the use of high energy ball milling to mix (to dope) the phase MgB2 with the AlB2 crystalline structure compound, ZrB2, with the same C32 hexagonal structure than MgB 2, in different concentrations, enabling the maintenance of the crystalline phase structures practically unaffected and the efficient mixture with the dopant. The high energy ball milling was performed with different ball-to-powder ratios. The analysis of the transformation and formation of phases was accomplished by X-ray diffractometry (XRD), using the Rietveld method, and scanning electron microscopy. As the high energy ball milling reduced the crystallinity of the milled compounds, also reducing the size of the particles, the XRD analysis were influenced, and they could be used as comparative and control method of the milling. Aiming the recovery of crystallinity, homogenization and final phase formation, heat treatments were performed, enabling that crystalline phases, changed during milling, could be obtained again in the final product. © (2010) Trans Tech Publications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spark plasma sintering (SPS) technique, by using a compacting pressure of 50 MPa, was used to consolidate pre-reacted powders of Bi1.65Pb0.35Sr2Ca2Cu3O10+delta (Bi-2223). The influence of the consolidation temperature, T-D, on the structural and electrical properties has been investigated and compared with those of a reference sample synthesized by the traditional solid-state reaction method and subjected to the same compacting pressure. From the X-ray diffraction patterns, performed in both powder and pellet samples, we have found that the dominant phase is the Bi-2223 in all samples but traces of the Bi2Sr2CaCu2O8+x (Bi-2212) were identified. Their relative density were similar to 85% of the theoretical density and the temperature dependence of the electrical resistivity, rho(T), indicated that increasing T-D results in samples with low oxygen content because the SPS is performed in vacuum. Features of the rho(T) data, as the occurrence of normal-state semiconductor-like behavior of rho(T) and the double resistive superconducting transition, are consistent with samples comprised of grains with shell-core morphology in which the shell is oxygen deficient. The SPS samples also exhibited superconducting critical current density at 77 K, J(c)(77K), between 2 and 10A/cm(2), values much smaller than similar to 22A/cm(2) measured in the reference sample. Reoxygenation of the SPS samples, post-annealed in air at different temperatures and times, was found to improve their microstructural and transport properties. Besides the suppression of the Bragg peaks belonging to the Bi-2212 phase, the superconducting properties of the post-annealed samples and particularly J(c)(77K) were comparable or better than those corresponding to the reference sample. Post-annealed samples at 750 degrees C for 5min exhibited J(c)(77K) similar to 130A/cm(2) even when uniaxially pressed at only 50 MPa. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768257]