817 resultados para Magnesium deficiency
Resumo:
Purpose This study evaluated the effect of severe magnesium (Mg) dietary deficiency on systemic bone density and biomechanical resistance of bone tissue to the removal torque of osseointegrated implants Materials and Methods The sample consisted of 45 rats, each received a titanium implant in their tibial metaphysis After 60 days, the animals were divided into three groups (n = 15) according to their dietary Mg the control group received the recommended content of Mg, group Mg1 received a 75% reduction in dietary Mg content, and group Mg2 was fed a diet with a 90% reduction in Mg con tent Animals were sacrificed 150 days after implant placement Serum concentrations of Mg were measured and the effect of Mg deficiency on systemic bone density was evaluated by densitometry of the lumbar vertebrae and femur Biomechanical characteristics were measured by resistance of the bone tissue to removal of the implants Results Lower Mg serum concentrations were found for the Mg1 and Mg2 groups, however, densitometric analysis and torque evaluations showed a statistically significant difference only in the Mg2 group (P < 05) There was a statistically significant difference in removal torque between the Mg2 group and the control group Conclusions This study showed that a severe deficiency of Mg decreased the systemic bone density and removal torque of osseointegrated implants INT J ORAL MAXILLOFAC IMPLANTS 2010 25 1125-1130
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Magnesium (Mg2+) deficiency is a frequently occurring disorder that leads to loss of bone mass, abnormal bone growth and skeletal weakness. It is not clear whether Mg2+ deficiency affects the formation and/or activity of osteoclasts. We evaluated the effect of Mg2+ restriction on these parameters. Bone marrow cells from long bone and jaw of mice were seeded on plastic and on bone in medium containing different concentrations of Mg2+ (0.8 mM which is 100% of the normal value, 0.4, 0.08 and 0 mM). The effect of Mg2+ deficiency was evaluated on osteoclast precursors for their viability after 3 days and proliferation rate after 3 and 6 days, as was mRNA expression of osteoclastogenesis-related genes and Mg2+-related genes. After 6 days of incubation, the number of tartrate resistant acid phosphatase-positive (TRACP+) multinucleated cells was determined, and the TRACP activity of the medium was measured. Osteoclastic activity was assessed at 8 days by resorption pit analysis. Mg2+ deficiency resulted in increased numbers of osteoclast-like cells, a phenomenon found for both types of marrow. Mg2+ deficiency had no effect on cell viability and proliferation. Increased osteoclastogenesis due to Mg2+ deficiency was reflected in higher expression of osteoclast-related genes. However, resorption per osteoclast and TRACP activity were lower in the absence of Mg2+. In conclusion, Mg2+ deficiency augmented osteoclastogenesis but appeared to inhibit the activity of these cells. Together, our in vitro data suggest that altered osteoclast numbers and activity may contribute to the skeletal phenotype as seen in Mg2+ deficient patients. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Objectives: This study evaluated the effect of magnesium dietary deficiency on bone metabolism and bone tissue around implants with established osseointegration. Materials and methods: For this, 30 rats received an implant in the right tibial metaphysis. After 60 days for healing of the implants, the animals were divided into groups according to the diet received Control group (CTL) received a standard diet with adequate magnesium content, while test group (Mg) received the same diet except for a 90% reduction of magnesium. The animals were sacrificed after 90 days for evaluation of calcium, magnesium, osteocalcin and parathyroid hormone (PTH) serum levels and the deoxypyridinoline (DPD) level in the urine. The effect of magnesium deficiency on skeletal bone tissue was evaluated by densitometry of the lumbar vertebrae, while the effect of bone tissue around titanium implants was evaluated by radiographic measurement of cortical bone thickness and bone density. The effect on biomechanical characteristics was verified by implant removal torque testing. Results: Magnesium dietary deficiency resulted in a decrease of the magnesium serum level and an increase of PTH and DPD levels (P <= 0.05). The Mg group also presented a loss of systemic bone mass decreased cortical bone thickness and lower values of removal torque of the implants (P <= 0.01). Conclusions: The present study concluded that magnesium-deficient diet had a negative influence on bone metabolism as well as on the bone tissue around the implants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To determine if magnesium deficiency aggravates the effects of a high-fat diet in growing rats in terms of obesity, lipid profile and insulin resistance. The study population comprised 48 newly weaned male Wistar Hannover rats distributed into four groups according to diet, namely, control group (CT; n = 8), control diet provided ad libitum; pair-feeding control group (PF; n = 16), control diet but in the same controlled amount as animals that received high-fat diets; high-fat diet group (HF; n = 12), and magnesium-deficient high-fat diet group (HFMg(-); n = 12). The parameters investigated were adiposity index, lipid profile, magnesium status, insulin sensitivity and the phosphorylation of proteins involved in the insulin-signaling pathway, i.e. insulin receptor β-subunit, insulin receptor substrate 1 and protein kinase B. The HF and HFMg(-) groups were similar regarding gain in body mass, adiposity index and lipid profile, but were significantly different from the PF group. The HFMg(-) group exhibited alterations in magnesium homeostasis as revealed by the reduction in urinary and bone concentrations of the mineral. No inter-group differences were observed regarding glucose homeostasis. Protein phosphorylation in the insulin-signaling pathway was significantly reduced in the high-fat groups compared with the control groups, demonstrating that the intake of fat-rich diets increased insulin resistance, a syndrome that was aggravated by magnesium deficiency. Under the experimental conditions tested, the intake of a magnesium-deficient high-fat diet led to alterations in the insulin-signaling pathway and, consequently, increased insulin resistance.
Resumo:
Introduction: Recent studies suggest that magnesium deficiency may play a role in inflammation. In diabetes and cardio-vascular diseases, conditions with a component of chronic inflammation, C–reactive protein levels are higher and associated with low serum magnesium. The objective of this study is to evaluate serum magnesium levels in patients with systemic lupus erythematosus and its potential association with inflammation and renal manifestations. Methods: All patients with systemic lupus erythematosus followed in a Systemic Immune Diseases Unit, from January 2012 until January 2014, were included in this cross sectional analysis. Patients with infection, neoplasia, liver failure and chronic kidney disease (stage > 3) were excluded. Clinical information and laboratory results (serum magnesium, C-reactive protein, erythrocyte sedimentation rate, serum creatinine and spot urine test) were collected. A multivariate analysis was performed to explore possible predictive factors for hypomagnesaemia. Results: One hundred and two patients were included (94.1% female, 21-86 years). 33.4% had hypertension, 8.8% had diabetes and 20.6% had hypomagnesaemia (< 1.8mg/dL). There were no significant differences between the inflammatory parameters of patients with hypomagnesaemia or normomagnesaemia. Serum magnesium was significantly lower with increasing comorbidities (p = 0.01). Leukocyturia was significantly higher in the hypomagnesaemia group (p = 0.03) and haematuria had a negative correlation with serum magnesium (-0.23, p < 0.05). Multivariate analysis showed that patients with hypertension and diabetes had higher risk of hypomagnesaemia: OR 42.29 (95% CI, 1.43-1249.31). Leukocyturia was also individually and independently associated with hypomagnesaemia: OR 8.37 (95% CI, 1.40-49.97). Conclusion: The presence of hypomagnesaemia in our patients with systemic lupus erythematosus was high. There was no association between the levels of serum magnesium and the inflammatory parameters. Increasing comorbidities and leukocyturia were independent predictors of lower serum magnesium. Finally, the association of leukocyturia and haematuria with lower serum magnesium may suggest a relationship with a higher disease activity.
Resumo:
1. Respiratory alkalosis accompanies the clinical syndrome of tetany, precipitates cardiac arrhythmias and predisposes to coronary vasoconstriction. Magnesium plays a critical role in the maintenance of membrane function, and magnesium depletion is often associated with cardiac arrhythmias or vasoconstriction. 2. As technology for detecting circulating ionized magnesium (the most interesting form with respect to physiological and biological properties) is now available in the form of new magnesium-selective electrodes, the effect of respiratory alkalosis induced by voluntary overbreathing for 30 min on circulating ionized magnesium was studied in eight healthy subjects. 3. The total plasma magnesium concentration was not modified by hyperventilation. On the contrary, hyperventilation was associated with a significant reduction in the ionized magnesium concentration of 0.05 (0.02-0.15) mmol/l (median and range) and in the free magnesium fraction of 0.06 (0.01-0.19). During hyperventilation the relative intravascular magnesium mass, calculated from changes in total plasma magnesium concentration and haematocrit, decreased significantly. 4. It is concluded that acute overbreathing reduces the circulating ionized magnesium concentration and the intravascular magnesium mass. It is therefore conceivable that extracellular magnesium deficiency is at least a subsidiary cause of the syndrome of tetany and the cardiac complications that are precipitated by hyperventilation.
Resumo:
Background: During menopause occurs weight gain and bone loss occurs due to the hormone decline during this period and other factors such as nutrition. Magnesium deficiency suggests a risk factor for obesity and osteoporosis. OBJECTIVE: To evaluate the clinical and nutritional magnesium status in a population of postmenopausal women, assessing intake and serum levels of magnesium in the study population and correlation with anthropometric parameters such as body mass index(BMI) and body fat, and biochemical parameters associated. SUBJECTS AND METHOD: The study involved 78 healthy women aged 44-76, with postmenopausal status, from the province of Grenade, Spain. The sample was divided into two age groups: group1, aged < 58, and group 2 aged >/= 58. Anthropometric parameters were recorded and nutritional intake was assessed by 72-hour recall, getting the RDAs through Nutriber(R) program. To assess the biochemical parameters was performed a blood sample was taken. Magnesium was analyzed by flame atomic absorption spectrophotometry (FAAS) in erythrocyte and plasma wet-mineralized samples. RESULTS: Our results show that 37.85% of the total subjects have an overweight status. Magnesium intake found in our population is insufficient in 36% of women,while plasma magnesium deficiency corresponds to 23% of the population and 72% of women have deficient levels of magnesium in erythrocyte. Positive correlations were found between magnesium intake and dietary intake of calcium, of phosphorus,and with prealbumin plasma levels, as well as with a lower waist / hip ratio Magnesium levels in erythrocyte were correlated with lower triglycerides and urea values. CONCLUSION: It is important to control and monitor the nutritional status of magnesium in postmenopausal women to prevent nutritional alterations and possible clinical and chronic degenerative diseases associated with magnesium deficiency and with menopause.
Resumo:
Hypomagnesemia and hypophosphatemia are frequent after severe burns; however, increased urinary excretion does not sufficiently explain the magnitude of the mineral depletion. We measured the mineral content of cutaneous exudates during the first week after injury. Sixteen patients aged 34 +/- 9 y (mean +/- SD) with thermal burns were studied prospectively and divided in 3 groups according to the extent of their burn injury and the presence or absence of mineral supplements: group 1 (n = 5), burns covering 26 +/- 5% of body surface; group 2 (n = 6), burns covering 41 +/- 10%; and group 3 (n = 5), burns covering 42 +/- 6% with prescription of magnesium and phosphate supplements. Cutaneous exudates were extracted from the textiles (surgical drapes, dressings, sheets, etc) surrounding the patients from day 1 to day 7 after injury. Mean magnesium serum concentrations decreased below reference ranges in 12 patients between days 1 and 4 and normalized thereafter. Phosphate, normal on day 0, was low during the first week. Albumin concentrations, normal on day 0, decreased and remained low. Urinary magnesium and phosphate excretion were within reference ranges and not larger in group 3. Mean daily cutaneous losses were 16 mmol Mg/d and 11 mmol P/d (largest in group 2). Exudative magnesium losses were correlated with burn severity (r = 0.709, P = 0.003). Cutaneous magnesium losses were nearly four times larger than urinary losses whereas cutaneous phosphate losses were smaller than urinary phosphate losses. Mean daily losses of both magnesium and phosphate were more than the recommended dietary allowances. Exudative losses combined with urinary losses largely explained the increased mineral requirements after burn injury.
Resumo:
Feeding mineral-deficient diets enhances absorptive efficiency as an attempt of the body to compensate for the lack of an essential nutrient. Under certain circumstances, it does not succeed, and nutritional deficiency is produced Our hypothesis was that mulin-type fructans (ITF), which arc known to affect mineral absorption, could increase Ca and Fe bioavailability in Ca- and Fe-deficient rats. Male Wistar rats (n = 48, 4 weeks old) were assigned to I of 8 groups derived from 2 x 2 x 2 factorial design with 2 levels of added Fe (0 and 35 mg/kg), Ca (0 and 5 g/kg), and ITF (0 and 100 g/kg) for 33 days. The Fe status (hemoglobin, serum Fe, total Fe-binding capacity, transferrin saturation, liver minerals) was evaluated. Tibia minerals (Ca, Mg, and Zn), bone strength, and histomorphometry were determined In nondeficient rats, ITF supplementation did not affect Fe status or organ minerals, with the exception of tibia Mg Moreover, ITF improved bone resilience and led to a reduction in eroded surface per body surface and number of osteoclasts per area In Ca-deficient rats, ITF increased liver (Fe and Zn) and tibia (Zn) mineral levels but impaired tibia Mg, yield load, and resilience. In conclusion, ITF worsened the tibia Mg levels and elastic properties when supplemented in Ca-deficient diets In contrast, although bone Ca was not affected in nondeficient rats under the present experimental conditions, bone quality improved, as demonstrated by a moderate reduction in femur osteoclast resorption and significant increases in tibia Mg content and elasticity. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Rationale Hyperaldosteronism, important in hypertension, is associated with electrolyte alterations, including hypomagnesemia, through unknown mechanisms. Objective To test whether aldosterone influences renal Mg(2+) transporters, (transient receptor potential melastatin (TRPM) 6, TRPM7, paracellin-1) leading to hypomagnesemia, hypertension and target organ damage and whether in a background of magnesium deficiency, this is exaggerated. Methods and results Aldosterone effects in mice selectively bred for high-normal (MgH) or low (MgL) intracellular Mg(2+) were studied. Male MgH and MgL mice received aldosterone (350 mu g/kg per day, 3 weeks). SBP was elevated in MgL. Aldosterone increased blood pressure and albuminuria and increased urinary Mg(2+) concentration in MgH and MgL, with greater effects in MgL. Activity of renal TRPM6 and TRPM7 was lower in vehicle-treated MgL than MgH. Aldosterone increased activity of TRPM6 in MgH and inhibited activity in MgL. TRPM7 and paracellin-1 were unaffected by aldosterone. Aldosterone-induced albuminuria in MgL was associated with increased renal fibrosis, increased oxidative stress, activation of mitogen-activated protein kinases and nuclear factor-NF-kappa B and podocyte injury. Mg(2+) supplementation (0.75% Mg(2+)) in aldosterone-treated MgL normalized plasma Mg(2+), increased TRPM6 activity and ameliorated hypertension and renal injury. Hence, in a model of inherited hypomagnesemia, TRPM6 and TRPM7, but not paracellin-1, are downregulated. Aldosterone further decreased TRPM6 activity in hypomagnesemic mice, a phenomenon associated with hypertension and kidney damage. Such effects were prevented by Mg(2+) supplementation. Conclusion Amplified target organ damage in aldosterone-induced hypertension in hypomagnesemic conditions is associated with dysfunctional Mg(2+)-sensitive renal TRPM6 channels. Novel mechanisms for renal effects of aldosterone and insights into putative beneficial actions of Mg(2+), particularly in hyperaldosteronism, are identified. J Hypertens 29: 1400-1410 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
During the years 1948, 1949 and 1951 a disease occurred in the cotton crops of the state of S. Paulo Brazil (S. Am.), which caused a severe drop in yields. The abnormality was characterized by a typical reddish - purple color of the leaves, being by this reason, called "vermelhão", that is, reddening of the cotton plant. The disease was associated with a dry season. Among the several hypotheses raised to explain the causes of the disease were: insect attack, potassium deficiency - where from the name "potash hunger" was also given -, and magnesium deficiency: In order to study the problem the Department of Agricultural Chemistry of the College of Agriculture of the University of São Paulo, at Piracicaba, carried out a series of experiments as follows: 1. pot experiments in which soil of one of the affected regions was used ("terra roxa", a red-brownish soil derived from basalt); 2. pot-soil experiments varying the moisture supplied; 3. sand culture experiments omitting certain elements from the nutrient solutions; 4. field plot experiments, conducted on a sandy soil; three different varieties were employed: Texas, Express, and I.A. 817; magnesium was applied either as sulfate or dolomitic limestone. All the experiments were completed with suitable chemical analyses. The results can be summarized as follows: 1. in the first trial, the not properly manured pots (minus Mg), symptoms were registered which were similar to the symptoms observed in the field; it was possible to establish some differences among three different types of reddening: due to lack of K in the mixed fertilizers used, the characteristic cotton rust made its appearance, the red color in the leaves of the minus Mg plants was all alike that described in the current literature as a symptom of Mg-deficiency; in all the treatments ocurred a yellow-reddish color in the leaves associated with the latest stages of maturity; 2. in the second experiment it was verified that when the plants in the pots with soil were kept 75 per cent of the water holding capacity, no symptom of deficiency showed up; was true even for the plants not receiving neither K nor Mg; however, plants supplied with only 25 per cent of the water holding capacity showed, respectively, cotton rust in the minus K treatment and the red purplish color in the minus Mg series; 3. the sand culture experiment confirmed lack of Mg as the cause of "vermelhão", being potash deficiency the responsible for cotton rust; 4. in the field experiment, variety LA. 817 revealed to be the most sensitive to "vermelhão" when Mg was omitted from the fertilizers; symptoms of K deficiency appeared when no K was supplied; both magnesium sulfate and dolomitic limestone proved to be equally effective in the control of "vermelhão"; 5. the analyses of material collected both in the field as well in the pots revealed that leaf petiole in the most reliable part to indicate the K and Mg status of the plant; the variation in Mg content suffered by the plants showing different stages of "vermelhão was, quantitatively, at least as large as that in K content, however when one deals with K deficient plants, that is, plants showing the typical rust, no variation occurred in the Mg content, whereas K in the dry mater dropped from more than 1 per cent to less than half per cent. Then, the following general conclusions can be drawn: 1. Mg deficiency is the cause of "vermelhão" of cotton crops; 2. K deficiency also occurred, but in a lesser degree; 3. the climate conditions - especially the lack of rain influenced the soil dynamic of K, and especially Mg, bringing a severe reduction in their assimilability; 4. the "vermelhão" disease can be easily controlled upon additions either of magnesium sulfate or dolomitic limestone.