998 resultados para Magnesium borate hydroxide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium borate hydroxide (MBH) nanowhiskers were synthesized using a one step hydrothermal process with different surfactants. The effect surfactants have on the structure and morphology of the MBH nanowhiskers has been investigated. The X-ray diffraction profile confirms that the as-synthesized material is of single phase, monoclinic MgBO2(OH). The variations in the size and shape of the different MBH nanowhiskers have been discussed based on the surface morphology analysis. The annealing of MBH nanowhiskers at 500 °C for 4 h has significant effect on the crystal structure and surface morphology. The UV–vis absorption spectra of the MBH nanowhiskers synthesized with and without surfactants show enhanced absorption in the low-wavelength region, and their optical band gaps were estimated from the optical band edge plots. The photoluminescence spectra of the MBH nanowhiskers produced with and without surfactants show broad emission band with the peak maximum at around 400 nm, which confirms the dominant contribution from the surface defect states.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Boracite is a magnesium borate mineral with formula: Mg3B7O13Cl and occurs as blue green, colorless, gray, yellow to white crystals in the orthorhombic – pyramidal crystal system. An intense Raman band at 1009 cm−1 was assigned to the BO stretching vibration of the B7O13 units. Raman bands at 1121, 1136, 1143 cm−1 are attributed to the in-plane bending vibrations of trigonal boron. Four sharp Raman bands observed at 415, 494, 621 and 671 cm−1 are simply defined as trigonal and tetrahedral borate bending modes. The Raman spectrum clearly shows intense Raman bands at 3405 and 3494 cm−1, thus indicating that some Cl anions have been replaced with OH units. The molecular structure of a natural boracite has been assessed by using vibrational spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoscale MgO powder was synthesized from magnesite ore by a wet chemical method. Acid dissolution was used to obtain a solution from which magnesium containing complexes were precipitated by either oxalic acid or ammonium hydroxide, The transformation of precipitates to the oxide was monitored by thermal analysis and XRD and the transformed powders were studied by electron microscopy. The MgO powders were added as dopants to Bi2SrCa2CuO8 powders and high temperature superconductor thick films were deposited on silver. Addition of suitable MgO powder resulted in increase of critical current density, J(c), from 8,900 Acm(-2) to 13,900 Acm(-2) measured at 77 K and 0 T. The effect of MgO addition was evaluated by XRD, electron microscopy and critical current density measurements. (C) 1998 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of the borate mineral sakhaite Ca12Mg4(BO3)7(CO3)4Cl(OH)2·H2O, a borate–carbonate of calcium and magnesium has been assessed using vibrational spectroscopy. Assignment of bands is undertaken by comparison with the data from other published results. Intense Raman band at 1134 cm−1 with a shoulder at 1123 cm−1 is assigned to the symmetric stretching mode. The Raman spectrum displays bands at 1479, 1524 and 1560 cm−1 which are assigned to the antisymmetric stretching vibrations. The observation of multiple carbonate stretching bands supports the concept that the carbonate units are non-equivalent. The Raman band at 968 cm−1 with a shoulder at 950 cm−1 is assigned to the symmetric stretching mode of trigonal boron. Raman bands at 627 and 651 cm−1 are assigned to the out-of-plane bending modes of trigonal and tetrahedral boron. Raman spectroscopy coupled with infrared spectroscopy enables the molecular structure of the mineral sakhaite to be assessed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibrational spectroscopy has been used to assess the structure of kotoite a borate mineral of magnesium which is isostructural with jimboite. The mineral is orthorhombic with point group: 2/m 2/m 2/m. The mineral has the potential as a new memory insulator material. The mineral has been characterised by a combination of Raman and infrared spectroscopy. The Raman spectrum is dominated by a very intense band at 835 cm−1, assigned to the symmetric stretching mode of tetrahedral boron. Raman bands at 919, 985 and 1015 cm−1 are attributed to the antisymmetric stretching modes of tetrahedral boron. Kotoite is strictly an hydrous borate mineral. An intense Raman band observed at 3559 cm−1 is attributed to the stretching vibration of hydroxyl units, more likely to be associated with the borate mineral hydroxyborate. The lack of observation of water bending modes proves the absence of water in the kotoite structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colemanite CaB3O4(OH)3 H2O is a secondary borate mineral formed from borax and ulexite in evaporate deposits of alkaline lacustrine sediments. The basic structure of colemanite contains endless chains of interlocking BO2(OH) triangles and BO3(OH) tetrahedrons with the calcium, water and extra hydroxide units interspersed between these chains. The Raman spectra of colemanite is characterized by an intense band at 3605 cm-1 assigned to the stretching vibration of OH units and a series of bands at 3182, 3300, 3389 and 3534 cm-1 assigned to water stretching vibrations. Infrared bands are observed in similar positions. The BO stretching vibrations of the trigonal and tetrahedral boron are characterized by Raman bands at 876, 1065 and 1084 cm-1. The OBO bending mode is defined by the Raman band at 611 cm-1. It is important to characterize the very wide range of borate minerals including colemanite because of the very wide range of applications of boron containing minerals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have undertaken a study of the mineral inderite Mg(H4B3O7)(OH)⋅5H2O a hydrated hydroxy borate mineral of magnesium using scanning electron microscopy, thermogravimetry and vibrational spectroscopic techniques. The structure consists of [B3O3(OH)5]2-[B3O3(OH)5]2- soroborate groups and Mg(OH)2(H2O)4 octahedra interconnected into discrete molecules by the sharing of two OH groups. Thermogravimetry shows a mass loss of 47.2% at 137.5 °C, proving the mineral is thermally unstable. Raman bands at 954, 1047 and 1116 cm−1 are assigned to the trigonal symmetric stretching mode. The two bands at 880 and 916 cm−1 are attributed to the symmetric stretching mode of the tetrahedral boron. Both the Raman and infrared spectra of inderite show complexity. Raman bands are observed at 3052, 3233, 3330, 3392 attributed to water stretching vibrations and 3459 cm−1 with sharper bands at 3459, 3530 and 3562 cm−1 assigned to OH stretching vibrations. Vibrational spectroscopy is used to assess the molecular structure of inderite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tricalcium aluminate, hydrocalumite and residual lime have been identified as reversion contributing compounds after the seawater neutralisation of bauxite refinery residues. The formation of these compounds during the neutralisation process is dependent on the concentration of residual lime, pH and aluminate concentrations in the residue slurry. Therefore, the effect of calcium hydroxide (CaOH2) in bauxite refinery liquors was analysed and the degree of reversion monitored. This investigation found that the dissolution of tricalcium aluminate, hydrocalumite and CaOH2 caused reversion and continued to increase the pH of the neutralised residue until a state of equilibrium was reached at a solution pH of 10.5. The dissolution mechanism for each compound has been described and used to demonstrate the implications that this has on reversion in seawater neutralised Bayer liquor. This investigation describes the limiting factors for the dissolution and formation of these trigger compounds as well as confirming the formation of Bayer hydrotalcite (mixture of Mg6Al2(OH)16(CO32-,SO42-)•xH2O and Mg8Al2(OH)12(CO32-,SO42-)•xH2O) as the primary mechanism for reducing reversion during the neutralisation process. This knowledge then allowed for a simple but effective method (addition of magnesium chloride or increased seawater to Bayer liquor ratio) to be devised to reduce reversion occurring after the neutralisation of Bayer liquors. Both methods utilise the formation of Bayer hydrotalcite to permanently (stable in neutralised residue) remove hydroxyl (OH-) and aluminate (Al(OH)4-) ions from solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel type of magnesium-air primary cell has been evolved which employs non-polluting and abundantly available materials. The cell is based on the scheme Mg/Mg(NO3)2, NaNO2, H20/Q(C). The magnesium anode utilization is about 90% at a current density of 20 mAcm -2. The anode has been shown to exhibit a low open-circuit corrosion, a relatively uniform pattern of corrosion and a low negative difference effect in the electrolyte developed above as compared to the conventional halide or perchlorate electrolytes. In the usual air-depolarized mode of operation, the cell has been found to be capable of continuous discharge over several months at a constant cell voltage of about 1 V and a current density of 1 mAcm -2 at the cathode. The long service-life capability arises from the formation of a protective film on the porous carbon cathode and fast sedimentation of the anodic product (magnesium hydroxide) in the electrolyte. The cell has a shelf-life in the activated state of about a year due to the low open-circuit corrosion of the anode. These favourable features suggest the practical feasibility of developing economical, long-life, non-reserve magnesium-air ceils for diverse applications using magnesium anodes with a high surface area and porous carbon-air electrodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic liquids (ILs) based on trihexyltetradecylphosphonium coupled with either diphenylphosphate or bis(trifluoromethanesulfonyl)amide have been shown to react with magnesium alloy surfaces, leading to the formation a surface film that can improve the corrosion resistance of the alloy. The morphology and microstructure of the magnesium surface seems critical in determining the nature of the interphase, with grain boundary phases and intermetallics within the grain, rich in zirconium and zinc, showing almost no interaction with the IL and thereby resulting in a heterogeneous surface film. This has been explained, on the basis of solid-state NMR evidence, as being due to the extremely low reactivity of the native oxide films on the intermetallics (ZrO2 and ZnO) with the IL as compared with the magnesium-rich matrix where a magnesium hydroxide and/or carbonate inorganic surface is likely. Solid-state NMR characterization of the ZE41 alloy surface treated with the IL based on (Tf)2N− indicates that this anion reacts to form a metal fluoride rich surface in addition to an organic component. The diphenylphosphate anion also seems to undergo an additional chemical process on the metal surface, indicating that film formation on the metal is not a simple chemical interaction between the components of the IL and the substrate but may involve electrochemical processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stable magnesium battery has been developed based on a magnesium anode, a poly(dioxyethane thiophene) (PEDOT) cathode and a near-saturated aqueous solution of LiCl, MgCl2, or mixture of these salts at pH of 11. This combination leads to a low water activity in the electrolyte, which thus suppresses the hydrogen evolution reaction on Mg, as well as producing a stable oxy-hydroxide film which protects the metal surface from freely corroding. The conducting polymer cathode is reduced somewhat during the discharge process, however, appears to be readily re-oxidised (as determined from the resistance) by the oxygen present in the cell. The cell is therefore primarily a Mg/O2 battery, however, the PEDOT appears to enhance the performance, in particular the discharge voltage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium ion was reacted with 5,7-dibromo-, 5,7-dichloro-, 7-iodo- and 5-chloro-7-iodo-8-hydroxyquinoline, in acetone/ammonium hydroxide medium under constant stirring to obtain (I) Mg[(C9H4ONBr2)(2)].2H(2)O; (II) Mg[(C9H4ONCl2)(2)].3H(2)O; (III) Mg[(C9H5ONI)(2)].2H(2)O and (IV) Mg[(C9H4ONICl)(2)].2.5H(2)O complexes. The compounds were characterized by elemental analysis, IR spectra, ICP, TG-DTA and DSC.Through thermal decomposition residues were obtained and characterized, by X-ray diffractometry, as a mixture of hexagonal MgBr2 and cubic MgO to the (I) compound at 850degreesC; cubic MgO to the (II), (III) and (IV) compounds at 750, 800 and 700degreesC, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work studies the resistant of the concrete against magnesium sulfate (MgSO4) and compare the results with values obtained previously of the same concretes exposed to sodium sulfate (Na2SO4). Thus, it is possible analyze the influence of the cation type. To that end, four different concrete mixes were made with sulfur resistant cement and mineral admixtures (silica fume, fly ash and blast furnace slag). The concretes were submerged for different period in magnesium sulfate (MgSO4). After that, different tests were carried out to define mechanical and microstructural properties. The results obtained were compared with reference values of concretes cured in calcium hydroxide [Ca(OH)2]. According to the results, the concrete with blast furnace slag presented the best behavior front MgSO4, meanwhile the concretes with silica fume and fly ash were the most susceptible. The resistance of the concrete with blast furnace slag could be attributed to the characteristics of the hydrated silicates formed during the hydration time, which include aluminum in the chemical chain that hinder its chemical decomposition during the attack of magnesium. The magnesium sulfate solution was most aggressive than sodium sulfate solution. El presente trabajo estudia la resistencia de hormigones al ataque de sulfatos provenientes de sulfato magnésico (MgSO4) y compara estos valores con resultados previos de los mismos hormigones atacados con sulfato sódico (Na2SO4). De esta manera se estudia la interacción del catión que acompaña al ion sulfato durante su afectación a la matriz cementicia. Para lo anterior, se diseñaron cuatro dosificaciones empleando cementos sulforresistentes y adiciones minerales (humo de sílice, ceniza volante y escoria de alto horno). Los hormigones se sumergieron, por distintos periodos de tiempo, en disolución de sulfato magnésico (MgSO4) de concentración 1M, para después realizarles ensayos mecánicos y a nivel microestructural. Los valores obtenidos se compararon con los obtenidos en el hormigón de referencia curado en hidróxido cálcico. El hormigón con escoria de alto horno presentó el mejor comportamiento frente a MgSO4, siendo las mezclas de humo de sílice y ceniza volante las más susceptibles. La resistencia del hormigón con escoria se atribuye a las características de los silicatos hidratados formados durante la hidratación, los cuales incorporan aluminio en las cadenas impidiendo su descomposición ante un ataque por magnesio. El medio con sulfato magnésico mostro una mayor agresividad que el medio con sulfato sódico.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofuels are promising renewable energy sources and can be derived from vegetable oil feedstocks. Although solid catalysts show great promise in plant oil triglyceride transesterification to biodiesel, the identification of active sites and operating surface nanostructures created during their processing is essential for the development of efficient heterogeneous catalysts. Systematic, direct observations of dynamic MgO nanocatalysts from a magnesium hydroxide-methoxide precursor were performed under controlled calcination conditions using novel in situ aberration corrected-transmission electron microscopy at the 0.1 nm level and quantified with catalytic reactivity and physico-chemical studies. Surface structural modifications and the evolution of extended atomic scale glide defects implicate coplanar anion vacancies in active sites in the transesterification of triglycerides to biodiesel. The linear correlation between surface defect density (and therefore polarisability) and activity affords a simple means to fine tune new, energy efficient nanocatalysts for biofuel synthesis. © 2009 Springer Science+Business Media, LLC.