992 resultados para Magnesium alloys


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy. The effects of environmental temperature and loading rates on impact and tension behavior of the alloy were also investigated. Design/methodology/approach: The tests were conducted using an Instron universal testing machine. The loading speed was changed from 1 mm/min to 300 mm/min to gain a better understanding of the effect of strain rate. To understand the failure behavior of this alloy at different environmental temperatures, Charpy impact test was conducted in a range of temperatures (-40~35°C). Plane strain fracture toughness (KIC) was evaluated using compact tension (CT) specimen. To gain a better understanding of the failure mechanisms, all fracture surfaces were observed using scanning electron microscopy (SEM). In addition, fatigue behavior of this alloy was estimated using tension test under tension-tension condition at 30 Hz. The stress amplitude was selected in the range of 20~50 MPa to obtain the S-N curve. Findings: The tensile test indicated that the mechanical properties were not sensitive to the strain rates applied (3.3x10-4~0.1) and the plastic deformation was dominated by twining mediated slip. The impact energy is not sensitive to the environmental temperature. The plane strain fracture toughness and fatigue limit were evaluated and the average values were 7.6 MPa.m1/2 and 25 MPa, respectively. Practical implications: Tested materials AM60 Mg alloy can be applied among others in automotive industry aerospace, communication and computer industry. Originality/value: Many investigations have been conducted to develop new Mg alloys with improved stiffness and ductility. On the other hand, relatively less attention has been paid to the failure mechanisms of Mg alloys, such as brittle fracture and fatigue, subjected to different environmental or loading conditions. In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dislocation mechanisms for plastic flow in quenched AlMg alloys with 0.45, 0.9, 2.7 and 6.4 at. % Mg were investigated using tensile tests and change-in-stress creep experiments in the temperaturhttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=28109&stage=core#te range 87° -473° K. The higher the magnesium content in the alloy, the higher was the temperature dependence of flow stress. The alloys showed no perceptible creep in the vicinity of room temperature, while they crept at lower as well as higher temperatures. The most probable cause of hardening at temperatures below ∼ 200° K was found to be the pinning of dislocations by randomly distributed solute atoms, while athermal locking of dislocations by dynamic strain ageing during creep was responsible for the negligibly small creep rate in the room temperature range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The humid aging of composite propellants containing a terpolymer of polybutadiene, acrylic acid, and acrylonitrile (PBAN) as a binder has been studied as a function of aging temperature, relative humidity, and aging time. Three composite types - AP-PBAN, AP-Al-PBAN, and AP-(Al-Mg) alloy- PBAN - have been studied. The burning rates of all three propellant types were unaffected by aging. The calorimetric values of composites containing aluminum-magnesium alloy decreased on aging, and the lattice parameter of the alloy decreased to a value close to that of aluminum. Water absorption in all of the samples increased with increases in the temperature, relative humidity, and aging time. The compression strength of the nonmetalized and aluminized samples decreased on aging, whereas that of the composites containing the alloy increased. The latter effect has been traced to reaction of residual carboxyl groups on the polymer chains with magnesium, leading to cross-linking. The reaction between the -COOH groups and magnesium has been proved using infrared spectroscopy. (Author)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, Mode-I fracture experiments are conducted using notched compact tension specimens machined from a rolled AZ31 Mg alloy plate having near-basal texture with load applied along rolling direction (RD) and transverse direction (TD). Moderately high notched fracture toughness of J(C) similar to 46 N/mm is obtained in both RD and TD specimens. Fracture surface shows crack tunneling at specimen mid-thickness and extensive shear lips near the free surface. Dimples are observed from SEM fractographs suggesting ductile fracture. EBSD analysis shows profuse tensile twinning in the ligament ahead of the notch. It is shown that tensile twinning plays a dual role in enhancing the toughness in the notched fracture specimens with reduced triaxiality. It provides significant dissipation in the background plastic zone and imparts hardening to the material surrounding the fracture process zone via operation of several mechanisms which retards micro-void growth and coalescence. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to their high specific strength and low density, magnesium and magnesium-based alloys have gained great technological importance in recent years. However, their underlying hexagonal crystal structure furnishes Mg and its alloys with a complex mechanical behavior because of their comparably smaller number of energetically favorable slip systems. Besides the commonly studied slip mechanism, another way to accomplish general deformation is through the additional mechanism of deformation-induced twinning. The main aim of this thesis research is to develop an efficient continuum model to understand and ultimately predict the material response resulting from the interaction between these two mechanisms.

The constitutive model we present is based on variational constitutive updates of plastic slips and twin volume fractions and accounts for the related lattice reorientation mechanisms. The model is applied to single- and polycrystalline pure magnesium. We outline the finite-deformation plasticity model combining basal, pyramidal, and prismatic dislocation activity as well as a convexification based approach for deformation twinning. A comparison with experimental data from single-crystal tension-compression experiments validates the model and serves for parameter identification. The extension to polycrystals via both Taylor-type modeling and finite element simulations shows a characteristic stress-strain response that agrees well with experimental observations for polycrystalline magnesium. The presented continuum model does not aim to represent the full details of individual twin-dislocation interactions, yet it is sufficiently efficient to allow for finite element simulations while qualitatively capturing the underlying microstructural deformation mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dry sliding tests were performed on as-cast magnesium alloys Mg97Zn1Y2 and AZ91 using a pin-on-disc configuration. Coefficients of friction and wear rates were measured within a load range of 20-380 and 20-240 N at a sliding velocity of 0.785 m/s. X-ray differactometer, scanning electron microscopy, tensile testing machine were used to characterize the microstructures and mechanical properties of Mg97Zn1Y2 alloy and AZ91 alloy. Worn surface morphologies of Mg97Zn1Y2 and AZ91 were examined using scanning electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, the edge-to-edge matching model has been introduced to predict the orientation relationships (OR) between the MgZn2 phase which has hexagonal close packed (HCP) structure and the HCP a-Mg matrix. Based on the crystal structures and lattice parameters only, the model has predicted the two most preferred ORs and they are: (1) [1 1 2 3](alpha-Mg) vertical bar vertical bar]1 1 2 3](alpha-Mg), (0 0 0 1)(alpha-Mg) 0.27 degrees from (0 0 0 1)(MgZn2), (1 0 1 1)(alpha-Mg) 26.18 degrees from (1 1 2 2)(MgZn2), (2) [1 0 1 0](alpha-Mg),vertical bar vertical bar[1 1 2 0](MgZn2), (0 0 0 1)(alpha-Mg) vertical bar vertical bar(0 0 0 1)(MgZn2), (1 0 1 1)(alpha-Mg) 3.28 degrees from ( 1 1 2 2)(MgZn2). Four experimental ORs have been reported in the alpha-Mg/MgZn2 system, and the most frequently reported one is ideally the OR (2). The other three experimental ORs are near versions of the OR (2). The habit plane of the OR (2) has been predicted and it agrees well with the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium and its alloys do not in general undergo the same extended range of plasticity as their competitor structural metals. The present work presents part II of a study that examines some of the roles deformation twinning might play in the phenomenon. A series of tensile and compression tests results are reported for common wrought alloys: AZ31, ZK60 and ZM20. These data are combined with EBSD analysis and simple flow stress models to argue the following: (i) that “contraction” double twinning (which enables contraction along the c axis) can decrease the uniform elongation, and (ii) that compression double twinning can also account for shear failure at low strains. The last of these is described as a combined consequence of strain softening of the continuum and the local generation of twin sized voids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium and its alloys do not in general undergo the same extended range of plasticity as their competitor structural metals. The present work is part I of a study that examines some of the roles deformation twinning might play in the phenomenon. A series of tensile test results are reported for the common wrought alloy AZ31. These data are employed in conjunction with a simple constitutive model to argue that View the MathML source twinning (which gives extension along the c-axis) can increase the uniform elongation in tensile tests. This effect appears to be similar to that seen in Ti, Zr and Cu–Si and in the so called TWIP phenomenon in steel.