854 resultados para Magnesium alloy
Resumo:
Laser surface cladding was carried out on a creep-resistant MRI 153M magnesium alloy with a mixture of Al and Al2O3 powders using a pulsed Nd:YAG laser at scan speeds of 21, 42, 63 and 84 mm/s. The Al2O3 particles partially or completely melted during laser irradiation and re-solidified with irregular shapes in the size range of 5–60 µm along with a few islands as large as 500 µm, within the grain-refined Mg-rich dendritic matrix. More than an order of magnitude improvement in wear resistance after cladding was attributed to the presence of ultra-hard Al2O3 particles, increased solid solubility of Al and other alloying elements, and a very fine dendritic microstructure as a result of rapid solidification in the cladded layer. However, corrosion resistance of the laser cladded alloy was reduced by almost an order of magnitude compared to that of the as-cast alloy mainly due to the presence of cracks and pores in the cladded layer.
Resumo:
The effect of deposition of Al +Al2O3 on MRI 153 M Mg alloy processed using a pulsed Nd:YAG laser is presented in this study. A composite coating with metallurgical joint to the substrate was formed. The microstructure and phase constituents were characterized and correlated with the thermal predictions. The laser scan speed had an effect on the average melt depth and the amount of retained and/or reconstituted alumina in the final coating. The coating consisted of alumina particles and highly refined dendrites formed due to the extremely high cooling rates (of the order of 10(8) K/s). The microhardness of the coating was higher and several fold improvement of wear resistance compared to the substrate was observed for the coatings. These microstructural features and physical properties were correlated with the effects predicted by a thermal model.
Resumo:
In the present investigation, the wear behaviour of a creep-resistant AE42 magnesium alloy and its composites reinforced with Saffil short fibres and SiC particles in various combinations is examined in the longitudinal direction i.e., the plane containing random fibre orientation is perpendicular to the steel counter-face. Wear tests are conducted on a pin-on-disc set-up under dry sliding condition having a constant sliding velocity of 0.837 m/s for a constant sliding distance of 2.5 km in the load range of 10-40 N. It is observed that the wear rate increases with increase in load for the alloy and the composites, as expected. Wear rate of the composites is lower than the alloy and the hybrid composites exhibit a lower wear rate than the Saffil short fibres reinforced composite at all the loads. Therefore, the partial replacement of Saffil short fibres by an equal volume fraction of SiC particles not only reduces the cost but also improves the wear resistance of the composite. Microstructural investigation of the surface and subsurface of the worn pin and wear debris is carried out to explain the observed results and to understand the wear mechanisms. It is concluded that the presence of SiC particles in the hybrid composites improves the wear resistance because these particles remain intact and retain their load bearing capacity even at the highest load employed, they promote the formation of iron-rich transfer layer and they also delay the fracture of Saffil short fibres to higher loads. Under the experimental conditions used in the present investigation, the dominant wear mechanism is found to be abrasion for the AE42 alloy and its composites. It is accompanied by severe plastic deformation of surface layers in case of alloy and by the fracture of Saffil short fibres as well as the formation of iron-rich transfer layer in case of composites.
Resumo:
The creep behaviour of a creep-resistant AE42 magnesium alloy reinforced with Saffil short fibres and SiC particulates in various combinations has been investigated in the transverse direction, i.e., the plane containing random fibre orientation was perpendicular to the loading direction, in the temperature range of 175-300 degrees C at the stress levels ranging from 60 to 140 MPa using impression creep test technique. Normal creep behaviour, i.e., strain rate decreasing with strain and then reaching a steady state, is observed at 175 degrees C at all the stresses employed, and up to 80 MPa stress at 240 degrees C. A reverse creep behaviour, i.e., strain rate increasing with strain, then reaching a steady state and then decreasing, is observed above 80 MPa stress at 240 degrees C and at all the stress levels at 300 degrees C. This pattern remains the same for all the composites employed. The reverse creep behaviour is found to be associated with fibre breakage. The apparent stress exponent is found to be very high for all the composites. However, after taking the threshold stress into account, the true stress exponent is found to range between 4 and 7, which suggests viscous glide and dislocation climb being the dominant creep mechanisms. The apparent activation energy Q(C) was not calculated due to insufficient data at any stress level either for normal or reverse creep behaviour. The creep resistance of the hybrid composites is found to be comparable to that of the composite reinforced with 20% Saffil short fibres alone at all the temperatures and stress levels investigated. The creep rate of the composites in the transverse direction is found to be higher than the creep rate in the longitudinal direction reported in a previous paper.
Resumo:
The mechanism of sub-microscopic precipitation in an Al-Zn-Mg alloy selected for its maximum response to ageing has been studied by a standardized oxide-replica technique in a 100 kV. Philips Electron Microscope. Contrary to earlier conclusions, examination of the oxide replicas has been shown to reveal details of the precipitation process almost as clearly as the thin-foil transmission technique. The reported formation of spherical Guinier-Preston zones followed by the development of a Widmanstaetten pattern of precipitated platelets has been confirmed. The zones have, however, been shown to grow into the platelets and not to dissolve in the matrix as reported earlier. The precipitation process has been correlated with the Hardness/Ageing Time curve and the structure of the precipitates has also been discussed.
Resumo:
The creep behaviour of a creep-resistant AE42 magnesium alloy has been examined in the temperature range of 150 to 240 degrees C at the stress levels ranging from 40 to 120 MPa using impression creep technique. A normal creep behaviour, i.e., strain rate decreasing with strain and then reaching a steady state, is observed at all the temperatures and stresses employed The stress exponent varies from 5.1 to 5.7 and the apparent activation energy varies from 130 to 140 kJ/mol, which suggests the high temperature climb of dislocation controlled by lattice self-diffusion being the dominant creep mechanism in the stress and temperature range employed The creep behaviour of the AE42 alloy has also been compared with its composites reinforced with Saffil short fibres and SiC particles in four combinations. All the composites exhibited a lower creep rate than the monolithic AE42 alloy tested at the same temperature and stress levels and the decrease in creep rate was greater in the longitudinal direction than in the transverse direction, as expected. All the hybrid composites, i.e., the composites reinforced with a combination of Saffil short fibres and SiC particles, exhibited creep rates comparable to the composite reinforced with 20% Saffil short fibres alone at all the temperature and stress levels employed, which is beneficial from the commercial point of view.
Resumo:
A creep resistant permanent mould cast Mg alloy MRI 230D was laser surface alloyed with Al and a mixture of Al and Al2O3 using pulsed Nd:YAG laser irradiation at four different scan speeds in order to improve the corrosion and wear resistance. The microstructure, corrosion and wear behavior of the laser surface alloyed material is reported in this manuscript. The coating comprised of a featureless microstructure with cellular-dendritic microstructure near the interface and exhibited good interfacial bonding. A few solidification cracks reaching down to substrate were also observed. The two step coating with Al followed by a mixture of Al and Al2O3 exhibited a slightly better corrosion resistance than the single step coating with Al. In the long run, however, corrosion resistance of both the coatings became comparable to the as-cast alloy. The corroded surface of the laser surface alloyed specimens revealed a highly localized corrosion. The laser surface alloyed specimens exhibited an improvement in wear resistance. The laser scan speed did not exhibit a monotonic trend either in corrosion or wear resistance.
Resumo:
The evolution of microstructure and texture during extrusion of pure magnesium and its single phase alloy AM30 has been studied experimentally as well as by crystal plasticity simulation. Microstructure and micro-texture were characterized by electron back scattered diffraction (EBSD), bulk-texture was measured using X-ray diffraction and deformation texture simulations were carried out using visco-plastic self consistent (VPSC) model. In spite of clear indications of the occurrence of dynamic recrystallization (DRX), simulations were able to reproduce the experimental textures successfully. This was attributed to the fact that the textures were c-type fibers with their axis of rotation parallel to the c-axis and DRX leads to simply rotate the texture around the c-axis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Polymeric compositions containing Al-Mg alloys show higher reactivities, in comparison with similar compositions containing aluminium. This is observed irrespective of the amount of oxidizer, type of oxidizer used, type of polymeric binder, and over a range of the particle sizes of the metal additive. This is evident from the higher calorimetric values obtained for compositions containing the alloy, in comparison to samples containing aluminium. Analysis of the combustion residue shows the increase in calorimetric value to be due to the greater extent of oxidation of the alloy. The interaction between the polymeric binder and the alloy was studied by coating the metal particles with the polymer by a coacervation technique. On ageing in the presence of ammonium perchlorate, cracking of the polymer coating on the alloy was noticed. This was deduced from differential thermal analysis experiments, and confirmed by scanning electron microscopic observations. The increase in stiffness of the coating, leading to cracking, has been traced to the cross-linking of the polymer by magnesium.
Resumo:
Wear resistant coatings were produced on a permanent mould cast MRI 230D Mg alloy by (a) PEO in silicate based electrolyte, (b) PEO in phosphate based electrolyte, (c) hybrid coatings of silicate PEO followed by laser surface alloying (LSA) with Al and Al(2)O(3), and (d) hybrid coatings of phosphate PEO followed by LSA with Al and Al(2)O(3). Microstructural characterization of the coatings was carried out by scanning electron microscopy (SEM) and X(ray diffraction. The tribological behavior of the coatings was investigated under dry sliding condition using linearly reciprocating ball-on-flat wear test. Both the PEO coatings exhibited a friction coefficient of about 0.8 and hybrid coatings exhibited a value of about 0.5 against the AISI 52100 steel ball as the friction partner, which were slightly reduced with the increase in applied load. The PEO coatings sustained the test without failure at 2 N load but failed at 5 N load due to micro-fracture caused by high contact stresses. The hybrid coatings did not get completely worn off at 2 N load but were completely removed exposing the substrate at 5 N load. The PEO coatings exhibited better wear resistance than the hybrid coatings and silicate PEO coatings exhibited better wear resistance than the phosphate PEO coatings. Both the PEO coatings melted/decomposed on laser irradiation and all the hybrid coatings exhibited similar microstructure and wear behavior irrespective of the nature of the primary PEO coating or laser energies. SEM examination of worn surfaces indicated abrasive wear combined with adhesive wear for all the specimens. The surface of the ball exhibited a discontinuous transfer layer after the wear test. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this present paper, the effects of non-isothermal rolling temperature and reduction in thickness followed by annealing on microstructure and mechanical properties of ZM21 magnesium alloy were investigated. The alloy rolled at four different temperatures 250 degrees C, 300 degrees C, 350 degrees C and 400 degrees C with reductions of 25%, 50% and 75%. Non-isothermal rolling resulted in grain refinement, introduction of shear bands and twins in the matrix alloy. Partial to full recrystallization was observed when the rolling temperature was above recrystallization temperature. Rolling and subsequent annealing resulted in strain-free equiaxed grains and complete disappearance of shear bands and twins. Maximum ultimate strength (345 MPa) with good ductility (14%) observed in the sample rolled at 250 degrees C with 75% reduction in thickness followed by short annealing. Recrystallization during warm/hot rolling was sluggish, but post-roll treatment gives distinct views about dynamic and static recrystallization. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This is the first successful attempt to produce simultaneously ultrafine grain size and weak texture in a single-phase magnesium alloy Mg-3Al-0.4Mn through an optimal choice of processing parameters in a modified multi-axial forging (MAF) process. An average grain size of similar to 0.4 mu m and a weak texture could be achieved. This has led to an increase in the strength as well as room-temperature ductility (55%). The plot of the yield loci shows a decrease in anisotropy after MAF. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Creep properties of QE22 magnesium based alloy and composites reinforced with 20 volume percent of short-fibers - Maftech (R), Saffil (R) or Supertech (R), were evaluated using the impression creep test. In the impression creep test, a load is applied with the help of a cylindrical tungsten carbide indenter of 1 mm diameter. This has advantages over conventional creep testing in terms of small specimen size requirement and simple machining. Depth of impression is recorded with time and steady state strain rate is obtained from the slope of the secondary strain (depth of impression divided by indenter diameter) vs. time plot. The results are compared with the creep obtained from conventional creep performed in tension on the same materials earlier. Microstructural examination of the plastically deformed regions is carried out to explain creep behaviour of these composites.
Resumo:
The plastic deformation behavior and dynamic recrystallization (DRX) in homogenized AZ31 Mg alloy was investigated in uniaxial compression in the temperature range between 150 and 400 degrees C with strain rates ranging from 10(-3) to 10(2) s(-1). Twinning was found to contribute significantly during the early stages of deformation. The onset of twinning was examined in detail by recourse to the examination of the appearance of first local maxima before peak strain in the stress-strain responses and the second derivative of stress with strain. High strain hardening rate was observed immediately after the onset of twinning and was found to increase with the Zener-Hollomon parameter. DRX was observed at temperatures above 250 degrees C whereas deformation at lower temperatures (< 250 degrees C) leads to extensive twinning at all the strain rates. At intermediate temperatures of 250-300 degrees C, plastic strains tend to localize near grain/twin boundaries, confining DRX only to these regions. Increase in the temperature promotes non-basal slip, which, in turn, leads to uniform deformation; DRX too becomes uniform. Deformation behavior in three different regimes of temperature is discussed. The dependence of critical stress for the onset of DRX and peak flow stress on temperature and strain rate are also described. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A systematic study of the evolution of the microstructure and crystallographic texture during free end torsion of a single phase magnesium alloy Mg-3Al-0.3Mn (AM30) was carried out. The torsion tests were done at a temperature of 250 degrees C to different strain levels in order to examine the progressive evolution of the microstructure and texture. A detailed microstructural analysis was performed using the electron back-scattered diffraction technique. The observed microstructural features indicated the occurrence of continuous dynamic recovery and recrystallization, starting with the formation of subgrains and ending with recrystallized grains with high angle boundaries. Texture and microstructure evolution were analysed by decoupling the effects of imposed shear and of dynamic recrystallization. Microstructure was partitioned to separate the deformed grains from the recovered/recrystallized grains. The texture of the deformed part could be reproduced by viscoplastic self-consistent polycrystal simulations. Recovered/recrystallized grains were formed as a result of rotation of these grains so as to reach a low plastic energy state. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.