999 resultados para Macro features


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rockmass movement due to mining steep metallic ore body is a considerable question in the surface movement and deformation issue caused by underground mining. Research on coal mining induced rockmass movement and its prediction problem have been performed for a long-term, and have achieved great progress at home and abroad. However, the rockmass movement caused by mining steep metal mine is distinctivly different from coal seam mining.. Existing surface movement laws and deformation prediction methods are not applicable to the rockmass movement caused by mining steep metal mine. So far the home and abroad research to this theory is presently at an early stage, and there isn’t mature theory or practical prediction method, which made a great impact on production. In this paper, the research object—Jinchuan nickel mine, which is typical steep metal mine, characterized by complex geological conditions, developed faults, cracked rockmass, high geostress, and prominent engineering stability problems. In addition, backfill mining method is used in the mine, the features of rockmass movement caused by this mining method are also different from other mining methods. In this paper, the laws of rock mass movement, deformation and destroy mechanism, and its prediction were analyzed based on the collection of data, detailed in-sit engineering geology survey, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring of ground surface movement, ground subsidence basin with apparent asymmetry is developing, the influence scope is larger in the upper faulted block than in the lower faulted block, and the center of ground movement is moving along the upper faulted block direction with increasing depth of mining. During the past half and seven years, the largest settlement has amounted to 1287.5mm, and corresponding horizontal displacement has amounted to 664.6mm. On the ground surface, two fissure belts show a fast-growing trend of closure. To sum up, mining steep metal mine with backfill method also exist the same serious problem of rockmass movement hazards. Fault, as a low intensity zone in rockmass, when it located within the region of mining influence, the change of potential energy mainly consumed in fault deformation associated with rockmass structure surface friction, which is the essence of displacement and stress barrier effects characterized by fault rupture zone. when steep fault located in the tensile deformation region incurred by underground excavation, no matter excavation in hangingwall or in footwall of the fault, there will be additional tensile stress on the vertical fault plane and decrease in the shear strength, and always showing characteristics of normal fault slip, which is the main reason of fault escarpment appeared on the ground surface. The No.14 shaft deformation and failure is triggered by fault activation, which showed with sidewall move, rupture, and break down features as the main form of a concentrated expression of fault effects. The size and orientation of principal stress in surrounding rock changed regularly with mining; therefore, roadway deformation and damage at different stages have different characteristics and distribution models. During the process of mining, low-intensity weak structures surface always showed the most obvious reaction, accompany with surface normal stress decrease and shear strength bring down, to some extent, occurred with relative slide and deformation. Meanwhile, the impact of mining is a relatively long process, making the structure surface effect of roadway deformation and damage more prominent than others under the influence of mining. Roadway surrounding rockmass deformation caused by the change of strain energy density field after excavation mainly belongs to elastic deformation, and the correspondented damage mainly belongs to brittle rupture, in this circumstance, surrounding rockmass will not appear large deformation. The large deformation of surrounding rockmass can only be the deformation associated with structure surface friction or the plastic deformation of itself, which mainly caused by the permanent self-weigh volume force,and long-term effect of mining led to the durability of this deformation Good pitting fill effect and supporting effect of backfill, as well as the friction of rockmass structure surface lead to obvious macro-rockmass movement with long-lag characteristics. In addition, the loss of original intensity and new structure surface arisen increased flexibility in rockmass and fill deformation in structure surface, which made the time required for rockmass potential energy translate into deformation work associated with plastic deformation and structure surface friction consumed much, and to a large extent, eliminated the time needed to do those plastic work during repeated mining, all of which are the fundamental reason of rockmass movement aftereffect more significant than before. Mining steep deposits in high tectonic stress area and in gravity stress area have different movement laws and deformation mechanism. The steep deposit, when the vertical size of the mining areas is smaller than the horizontal size of the orebody, no matter mining in gravity stress area or in high tectonic stress area, they have similar features of ground movement with mining horizontal orebody; contrarily, there will appear double settlement centers on the ground surface under the condition of mining in high tectonic stress area, while there will always be a single center under the other condition. Meanwhile the ground movement lever, scale of mining influence area and macro features of ground movement, deformation and fracture are also different from mining in gravity stress area, and the fundamental reason lies in the impact of orientation of the maximum principal stress on rock movement features in in-site rock stress field. When mining thick and steep deposit, the ground surface movement and deformation characteristic curves are significantly different from excavating the horizontal ore bed and thin steep deposit. According to the features of rockmass movement rate, the development process of mining-induced rockmass movement is divided into three stages: raising stage, steadily stage and gradually decay stage. Considering the actual exploitation situation, GPS monitoring results and macro-characteristics of surface movement, the current subsidence pattern of Jinchuan No.2 mine is in the early stage of development. Based on analysis of surface movement rate, surface subsidence rate increase rapidly when mining in double lever at the same time, and reach its peak until the exploitation model ended. When double lever mining translate into single, production decreased, surface subsidence rate suddenly start to reduce and maintain a relatively low value, and the largest subsidence center will slowly move along with the hangingwall ore body direction with increasing depth of mining, at the same time, the scope and extent of subsidence in footwall ore body will begin magnify, and a sub-settlement center will appear on ground surface, accompanied with the development and closure trend of ground fissure, the surrounding rockmass of shaft and roadway will be confronted to more frequent and severe deformation and failure, and which will have a negative impact on the overall stability of No.2 mine mining. On the premise of continuity of rockmass movement, gray system model can be used in ground rockmass movement prediction for good results. Under the condition of backfill mining step by step, the loose effect of compact status of the hard, broken rockmass led to lower energy release rate, although surrounding rockmass has high elastic energy, loose and damage occurred in the horizontal ore body, which made the mining process safety without any large geological hazards. During the period of mining the horizontal ore body to end, in view of its special “residual support role”, there will be no large scale rockmass movement hazards. Since ground surface movement mainly related to the intensity of mining speed and backfill effect, on the premise of constant mining speed, during the period of mining the horizontal ore body to end, the rate of ground surface rockmass movement and deformation won’t have sudden change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dance videos are interesting and semantics-intensive. At the same time, they are the complex type of videos compared to all other types such as sports, news and movie videos. In fact, dance video is the one which is less explored by the researchers across the globe. Dance videos exhibit rich semantics such as macro features and micro features and can be classified into several types. Hence, the conceptual modeling of the expressive semantics of the dance videos is very crucial and complex. This paper presents a generic Dance Video Semantics Model (DVSM) in order to represent the semantics of the dance videos at different granularity levels, identified by the components of the accompanying song. This model incorporates both syntactic and semantic features of the videos and introduces a new entity type called, Agent, to specify the micro features of the dance videos. The instantiations of the model are expressed as graphs. The model is implemented as a tool using J2SE and JMF to annotate the macro and micro features of the dance videos. Finally examples and evaluation results are provided to depict the effectiveness of the proposed dance video model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of neighbourhood built and social environments in shaping children’s physical activity has received increasing interest over the past 10 years. We reviewed recent evidence published between 2011 and 2014. Most of the recent evidence continues to be cross-sectional. Few macro-level neighbourhood attributes were consistently associated with physical activity in the expected direction. The strongest evidence for associations between neighbourhood attributes and physical activity with was for the transportation environment, particularly in relation to proximity to school and transport-related physical activity. There was intermediate evidence that neighbourhood walking/cycling infrastructure and pedestrian safety structures are associated with transport-related PA. Recent evidence on associations between the neighbourhood built and social environment and children’s PA is modest. Stronger study designs and greater attention to conceptual-matching and specificity of measures are critical to advance the evidence base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural framework of the sedimentary basins usually plays an important role in oil prospects and reservoirs. Geometry, interconectivity and density of the brittle features developed during basin evolution could change the permo-porous character of the rocks involved in generation, migration and entrapment of fluid flow. Once the structural characterization of the reservois using only sub-surface data is not an easy task, many studies are focused in analogous outcrops trying to understand the main processes by which brittle tectonic is archieved. In the Santana do Acaraú region (Ceará state, NE Brazil) a pack of conglomeratic sandstone (here named CAC) has its geometry controlled mainly by NE trending faults, interpreted as related to reactivation of a precambrian Sobral Pedro II Lineament (LSP-II). Geological mapping of the CAC showed a major NE-SW trending synform developed before its complete lithification during a dextral transpression. This region was then selected to be studied in details in order of constrain the cretaceous deformation and so help the understanding the deformation of the basins along the brazilian equatorial margin. In order to characterize the brittle deformation in different scales, I study some attributes of the fractures and faults such as orientation, density, kinematic, opening, etc., through scanlines in satellite images, outcrops and thin sections. The study of the satellite images showed three main directions of the macrostructures, N-S, NE-SW and E-W. Two of theses features (N-S and E-W) are in aggreement with previous geophysical data. A bimodal pattern of the lineaments in the CAC´s basement rocks has been evidenciated by the NE and NW sets of structures obtained in the meso and microscale data. Besides the main dextral transpression two others later events, developed when the sediments were complety lithified, were recognized in the area. The interplay among theses events is responsible for the compartimentation of the CAC in several blocks along within some structural elements display diferents orientations. Based on the variation in the S0 orientation, the CAC can be subdivided in several domains. Dispite of the variations in orientations of the fractures/faults in the diferents domains, theses features, in the meso and microscopic scale, are concentrated in two sets (based on their trend) in all domains which show similar orientation of the S0 surface. Thus the S0 orientation was used to group the domains in three major sets: i) The first one is that where S0 is E-W oriented: the fractures are oriented mainly NE with the development of a secondary NW trending; ii) S0 trending NE: the fractures are concentrated mainly along the trend NW with a secondary concentration along the NE trend; iii) The third set, where S0 is NS the main fractures are NE and the secondary concentration is NW. Another analized parameter was the fault/fracture length. This attribute was studied in diferent scales trying to detect the upscale relationship. A terrain digital model (TDM) was built with the brittlel elements supperposed. This model enhanced a 3D visualization of the area as well as the spatial distribution of the fault/fractures. Finally, I believe that a better undertanding of the brittle tectonic affecting both CAC and its nearby basement will help the future interpretations of the tectonic envolved in the development of the sedimentary basins of the brazilian equatorial margin and their oil reservoirs and prospects, as for instance the Xaréu field in the Ceará basin, which subsurface data could be correlated with the surface ones

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O quati (Nasua nasua) é um animal que pertence à Família Procyonidae. Foram utilizados três animais ortotanasiados, de ambos os sexos, provenientes do Criatório Científico de Animais Silvestres, Centro Universitário Fundação de Ensino Octávio Bastos (Cecrimpas, Unifeob) autorizado pelo IBAMA (Proc.02027.003731/04-76). Para a análise macroscópica, as línguas foram retiradas, analisadas e foto-documentadas. Para análise microscópica, as línguas foram processadas rotineiramente pela técnica de microscopia eletrônica de varredura e inclusão em Paraplast; pela técnica de microscopia de luz os fragmentos foram cortados em micrótomo, com espessura média de 5mm e corados em HE e Picrosírius com fundo de hematoxilina. Os resultados macroscópicos e microscópicos mostram que a língua do quati apresenta papilas filiformes, fungiformes, valadas e cônicas sendo estas distribuídas nas regiões rostralis, medialis e caudalis. Histologicamente, a língua do quati é revestida por um epitélio pavimentoso estratificado queratinizado apresentando camada basal, espinhosa, granulosa e córnea com fibras de músculos estriados esqueléticos longitudinais e transversais e diversas glândulas. De acordo com os resultados pode-se concluir que a língua do quati possui características macroscópicas e microscópicas semelhantes aos canídeos, tendo como diferença o número de papilas valadas e o grau de queratinização.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we investigate the fabrication of 3D porous poly(lactic-co-glycolic acid) (PLGA) scaffolds using the thermally-induced phase separation technique. The current study focuses on the selection of alternative solvents for this process using a number of criteria, including predicted solubility. toxicity, removability and processability. Solvents were removed via either vacuum freeze-drying or leaching, depending on their physical properties. The residual solvent was tested using gas chromatography-mass spectrometry. A large range of porous, highly interconnected scaffold architectures with tunable pore size and alignment was obtained, including combined macro- and microporous structures and an entirely novel 'porous-fibre' structure. The morphological features of the most promising poly(lactic-co-glycolic acid) scaffolds were analysed via scanning electron microscopy and X-ray micro-computed tomography in both two and three dimensions. The Young's moduli of the scaffolds under conditions of temperature, pH and ionic strength similar to those found in the body were tested and were found to be highly dependent on the architectures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Southern Ocean ecosystem at the Antarctic Peninsula has steep natural environmental gradients, e.g. in terms of water masses and ice cover, and experiences regional above global average climate change. An ecological macroepibenthic survey was conducted in three ecoregions in the north-western Weddell Sea, on the continental shelf of the Antarctic Peninsula in the Bransfield Strait and on the shelf of the South Shetland Islands in the Drake Passage, defined by their environmental envelop. The aim was to improve the so far poor knowledge of the structure of this component of the Southern Ocean ecosystem and its ecological driving forces. It can also provide a baseline to assess the impact of ongoing climate change to the benthic diversity, functioning and ecosystem services. Different intermediate-scaled topographic features such as canyon systems including the corresponding topographically defined habitats 'bank', 'upper slope', 'slope' and 'canyon/deep' were sampled. In addition, the physical and biological environmental factors such as sea-ice cover, chlorophyll-a concentration, small-scale bottom topography and water masses were analysed. Catches by Agassiz trawl showed high among-station variability in biomass of 96 higher systematic groups including ecological key taxa. Large-scale patterns separating the three ecoregions from each other could be correlated with the two environmental factors, sea-ice and depth. Attribution to habitats only poorly explained benthic composition, and small-scale bottom topography did not explain such patterns at all. The large-scale factors, sea-ice and depth, might have caused large-scale differences in pelagic benthic coupling, whilst small-scale variability, also affecting larger scales, seemed to be predominantly driven by unknown physical drivers or biological interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intertidal flats of the estuarine macro-intertidal Baie des Veys (France) were investigated to identify spatial features of sediment and microphytobenthos (MPB) in April 2003. Gradients occurred within the domain, and patches were identified close to vegetated areas or within the oyster-farming areas where calm physical conditions and biodeposition altered the sediment and MPB landscapes. Spatial patterns of chl a content were explained primarily by the influence of sediment features, while bed elevation and compaction brought only minor insights into MPB distribution regulation. The smaller size of MPB patches compared to silt patches revealed the interplay between physical structure defining the sediment landscape, the biotic patches that they contain, and that median grain-size is the most important parameter in explaining the spatial pattern of MPB. Small-scale temporal dynamics of sediment chl a content and grain-size distribution were surveyed in parallel during 2 periods of 14 d to detect tidal and seasonal variations. Our results showed a weak relationship between mud fraction and MPB biomass in March, and this relationship fully disappeared in July. Tidal exposure was the most important parameter in explaining the summer temporal dynamics of MPB. This study reveals the general importance of bed elevation and tidal exposure in muddy habitats and that silt content was a prime governing physical factor in winter. Biostabilisation processes seemed to behave only as secondary factors that could only amplify the initial silt accumulation in summer rather than primary factors explaining spatial or long-term trends of sediment changes.