97 resultados para Macaques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaccines to efficiently block or limit sexual transmission of both HIV and human papilloma virus (HPV) are urgently needed. Chimeric virus-like-particle (VLP) vaccines consisting of both multimerized HPV L1 proteins and fragments of SIV gag p27, HIV-1 tat, and HIV-1 rev proteins (HPV-SHIV VLPs) were constructed and administered to macaques both systemically and mucosally. An additional group of macaques first received a priming vaccination with DNA vaccines expressing the same SIV and HIV-1 antigens prior to chimeric HPV-SHIV VLP boosting vaccinations. Although HPV L1 antibodies were induced in all immunized macaques, weak antibody or T cell responses to the chimeric SHIV antigens were detected only in animals receiving the DNA prime/HPV-SHIV VLP boost vaccine regimen. Significant but partial protection from a virulent mucosal SHIV challenge was also detected only in the prime/boosted macaques and not in animals receiving the HPV-SHIV VLP vaccines alone, with three of five prime/boosted animals retaining some CD4+ T cells following challenge. Thus, although some immunogenicity and partial protection was observed in non-human primates receiving both DNA and chimeric HPV-SHIV VLP vaccines, significant improvements in vaccine design are required before we can confidently proceed with this approach to clinical trials. (C) 2002 Elsevier Science (USA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early loss of splenic Tfh cells in SIV-infected rhesus macaques

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular nature of the infiltrate in cutaneous lesion of rhesus monkeys experimentally infected with Leishmania (L.) amazonensis was characterized by immunohistochemistry. Skin biopsies from infected animals with active or healing lesions were compared to non-infected controls (three of each type) to quantitate inflammatory cell types. Inflammatory cells (composed of a mixture of T lymphocyte subpopulations, macrophages and a small number of natural killer cells and granulocytes) were more numerous in active lesions than in healing ones. T-cells accounted for 44.7 ± 13.1% of the infiltrate in active lesions (versus CD2+= 40.3 ± 5.7% in healing lesions) and T-cell ratios favor CD8+ cells in both lesion types. The percentage of cells expressing class II antigen (HLA-DR+) in active lesions (95 ± 7.1%) was significantly higher (P < 0.005) from the healing lesions (42.7 ± 12.7%). Moreover, the expression of the activation molecules CD25 (@ 16%), the receptor for interleukin-2, suggests that many T cells are primed and proliferating in active lesions. Distinct histopathological patterns were observed in lesions at biopsy, but healing lesions contained more organized epithelioid granulomas and activated macrophages, followed by fibrotic substitution. The progression and resolution of skin lesions appears to be very similar to that observed in humans, confirming the potential for this to be used as a viable model to study the immune response in human cutaneous leishmaniasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seven rhesus macaques were infected intradermally with 10(7) promastigotes of Leishmania (Leishmania) major. All monkeys developed a localized, ulcerative, self-healing nodular skin lesion at the site of inoculation of the parasite. Non-specific chronic inflammation and/or tuberculoid-type granulomatous reaction were the main histopathological manifestations of the disease. Serum Leishmania-specific antibodies (IgG and IgG1) were detected by ELISA in all infected animals; immunoblot analyses indicated that numerous antigens were recognized. A very high degree of variability was observed in the parasite-specific cell-mediated immune responses [as detected by measuring delayed-type hypersensitivity (DTH) reaction, in vitro lymphocyte proliferation, and gamma interferon (IFN-gamma) production] for individuals over time post challenge. From all the recovered monkeys (which showed resolution of the lesions after 11 weeks of infection), 57.2% (4/7) and 28.6% (2/7) animals remained susceptible to secondary and tertiary infections, respectively, but the disease severity was altered (i.e. lesion size was smaller and healed faster than in the primary infection). The remaining monkeys exhibited complete resistance (i.e. no lesion) to each rechallenge. Despite the inability to consistently detect correlates of cell-mediated immunity to Leishmania or correlation between resistance to challenge and DTH, lymphocyte transformation or IFN-gamma production, partial or complete acquired resistance was conferred by experimental infection. This primate model should be useful for measuring vaccine effectiveness against the human disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhesus macaques infected with the WE strain of lymphocytic choriomeningitis virus (LCMV-WE) serve as a model for human infection with Lassa fever virus. To identify the earliest events of acute infection, rhesus macaques were monitored immediately after lethal infection for changes in peripheral blood mononuclear cells (PBMCs). Changes in CD3, CD4, CD8 and CD20 subsets did not vary outside the normal fluctuations of these blood cell populations; however, natural killer (NK) and γδ T cells increased slightly on day 1 and then decreased significantly after two days. The NK subsets responsible for the decrease were primarily CD3-CD8+ or CD3-CD16+ and not the NKT (primarily CD3+CD56+) subset. Macaques infected with a non-virulent arenavirus, LCMV-Armstrong, showed a similar drop in circulating NK and γδ T cells, indicating that this is not a pathogenic event. V³9 T cells, representing the majority of circulating γδ T cells in rhesus macaques, displayed significant apoptosis when incubated with LCMV in cell culture; however, the low amount of cell death for virus-co-cultured NK cells was insufficient to account for the observed disappearance of this subset. Our observations in primates are similar to those seen in LCMV-infected mice, where decreased circulating NK cells were attributed to margination and cell death. Thus, the disappearance of these cells during acute hemorrhagic fever in rhesus macaques may be a cytokine-induced lymphopenia common to many virus infections.