898 resultados para MYOTOXIC SITE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present study, an acidic PLA(2), designated BI-PLA(2), was isolated from Bothrops leucurus snake venom through two chromatographic steps: ion-exchange on CM-Sepharose and hydrophobic chromatography on Phenyl-Sepharose. Bl-PLA(2) was homogeneous on SDS-PAGE and when submitted to 2D electrophoresis the molecular mass was 15,000 Da and pl was 5.4. Its N-terminal sequence revealed a high homology with other Asp49 acidic PLA(2)s from snake venoms. Its specific activity was 159.9 U/mg and the indirect hemolytic activity was also higher than that of the crude venom. Bl-PLA(2) induced low myotoxic and edema activities as compared to those of the crude venom. Moreover, the enzyme was able to induce increments in IL-12p40, TNF-alpha, IL-1 beta and IL-6 levels and no variation of IL-8 and IL-10 in human PBMC stimulated in vitro, suggesting that Bl-PLA2 induces proinflammatory cytokine production by human mononuclear cells. Bothrops leucurus venom is still not extensively explored and knowledge of its components will contribute for a better understanding of its action mechanism. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Agkistrodon contortrix laticinctus myotoxin is a Lys(49)- phospholipase A(2) (EC 3.1.1.4) isolated from the venom of the serpent A contortrix laticinctus (broad-banded copperhead). We present here three monomeric crystal structures of the myotoxin, obtained under different crystallization conditions. The three forms present notable structural differences and reveal that the presence of a ligand in the active site (naturally presumed to be a fatty acid) induces the exposure of a hydrophobic surface (the hydrophobic knuckle) toward the C terminus. The knuckle in A contortrix laticinctus myotoxin involves the side chains of Phe(121) and Phe(124) and is a consequence of the formation of a canonical structure for the main chain within the region of residues 118-125. Comparison with other Lys(49)-phospholipase A(2) myotoxins shows that although the knuckle is a generic structural motif common to all members of the family, it is not readily recognizable by simple sequence analyses. An activation mechanism is proposed that relates fatty acid retention at the active site to conformational changes within the C-terminal region, a part of the molecule that has long been associated with Ca2+-independent membrane damaging activity and myotoxicity. This provides, for the first time, a direct structural connection between the phospholipase active site and the C-terminal myotoxic site, justifying the otherwise enigmatic conservation of the residues of the former in supposedly catalytically inactive molecules.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A monomeric basic PLA2 (PhTX-II) of 14149.08 Da molecular weight was purified to homogeneity from Porthidium hyoprora venom. Amino acid sequence by in tandem mass spectrometry revealed that PhTX-II belongs to Asp49 PLA2 enzyme class and displays conserved domains as the catalytic network, Ca2+-binding loop and the hydrophobic channel of access to the catalytic site, reflected in the high catalytic activity displayed by the enzyme. Moreover, PhTX-II PLA2 showed an allosteric behavior and its enzymatic activity was dependent on Ca2+. Examination of PhTX-II PLA2 by CD spectroscopy indicated a high content of alpha-helical structures, similar to the known structure of secreted phospholipase IIA group suggesting a similar folding. PhTX-II PLA2 causes neuromuscular blockade in avian neuromuscular preparations with a significant direct action on skeletal muscle function, as well as, induced local edema and myotoxicity, in mice. The treatment of PhTX-II by BPB resulted in complete loss of their catalytic activity that was accompanied by loss of their edematogenic effect. On the other hand, enzymatic activity of PhTX-II contributes to this neuromuscular blockade and local myotoxicity is dependent not only on enzymatic activity. These results show that PhTX-II is a myotoxic Asp49 PLA2 that contributes with toxic actions caused by P. hyoprora venom.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The crystal structure of Piratoxin-I (PrTX-I) a Lys49 homologue isolated from the venom of Bothrops pirajai has been determined and refined at 2.8 Angstrom to a crystallographic residual of 19.7% (R-free = 29.7%). Amino-acid sequence differences between catalytically active phospholipases and PrTX-I in the putative Ca2+-binding loop, specifically the substitutions Tyr28-->Asn, Gly32-->Leu and Asp49-->Lys, result in an altered conformation of this loop, the analysis of the position of the E-amino group of Lys49 in the PrTX-I structure indicates that it fills the site normally occupied by the calcium ion in the catalytically active phospholipases, In contrast to the homologous monomeric Lys49 variant from Agkistrodon piscivorus piscivorus (App), PrTX-I is present as a dimer in the crystalline state, as observed in the structures of myotoxin II from Bothrops asper and Bothropstoxin I from Bothrops jararacussu. The two molecules in the asymmetric unit in the crystal structure of PrTX-I are related by a nearly perfect two-fold symmetry axis, yet the dimeric structure is radically different from the dimeric structure of the phospholipase from Crotalus atrox. In the C. atrox structure the dimer interface occludes the active sites, whereas in the PrTX-I structure they are exposed to solvent, (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Lys49 phospholipase A(2) homologues are highly myotoxic and cause extensive tissue damage but do not display hydrolytic activity towards natural phospholipids. The binding of heparin, heparin derivatives and polyanionic compounds such as suramin result in partial inhibition (up to 60%) of the myotoxic effects due to a change in the overall charge of the interfacial surface. In vivo experiments demonstrate that polyethylene glycol inhibits more than 90% of the myotoxic effects without exhibiting secondary toxic effects. The crystal structure of bothropstoxin-I complexed with polyethylene glycol reveals that this inhibition is due to steric hindrance of the access to the PLA(2)-active site-like region. These two inhibitory pathways indicate the roles of the overall surface charge and free accessibility to the PLA2-active site-like region in the functioning of Lys49 phospholipases A(2) homologues. Molecular dynamics simulations, small angle X-ray scattering and structural analysis indicate that the oligomeric states both in solution and in the crystalline states of Lys49 phospholipases A2 are principally mediated by hydrophobic contacts formed between the interfacial surfaces. These results provide the framework for the potential application of both clinically approved drugs for the treatment of Viperidae snakebites. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Myotoxin II, a myotoxic calcium-independent phospholipase-like protein isolated from the venom of Bothrops asper, possesses no detectable phospholipase activity. The crystal structure has been determined and refined at 2.8 Angstrom to an R factor of 16.5% (F>3 sigma) with excellent stereochemistry. Amino-acid differences between catalytically active phospholipases and myotoxin LI in the Ca2+-binding region, specifically the substitutions Tyr28-->Asn, Gly32-->Leu and Asp49-->Lys, result in an altered local conformation. The key difference is that the epsilon-amino group of Lys49 fills the site normally occupied by the calcium ion in catalytically active phospholipases. In contrast to the homologous monomeric Lys49 variant from Agkistrodon piscivorus piscivorus, myotoxin II is present as a dimer both in solution and in the crystalline state. The two molecules in the asymmetric unit are related by a nearly perfect twofold axis, yet the dimer is radically different from the dimer formed by the phospholipase from Crotalus atrox. Whereas in C. atrox the dimer interface occludes the active sites, in myotoxin II they are exposed to solvent.
Resumo:
Piratoxins (PrTX) I and III are phospholipases A(2) (PLA(2)s) or PLA(2) homologue myotoxins isolated from Bothrops pirajai snake venom, which also induce myonecrosis, bactericidal activity against Escherichia coli, disruption of artificial membranes, and edema. PrTX-III is a catalytically active hemolytic and anticoagulant Asp49 PLA(2), while PrTX-I is a Lys49 PLA, homologue, which is catalytically inactive on artificial substrates, but promotes blockade of neuromuscular transmission. Chemical modifications of His, Lys, Tyr, and Trp residues of PrTX-I and PrTX-III were performed, together with cleavage of the N-terminal octapeptide by CNBr and inhibition by heparin and EDTA. The lethality, bactericidal activity, myotoxicity, neuromuscular effect, edema inducing effect, catalytic and anticoagulant activities, and the liposome-disruptive activity of the modified toxins were evaluated. A complex pattern of functional differences between the modified and native toxins was observed. However, in general, chemical modifications that significantly affected the diverse pharmacological effects of the toxins did not influence catalytic or membrane disrupting activities. Analysis of structural changes by circular dichroism spectroscopy demonstrated significant changes in the secondary structure only in the case of N-terminal octapeptide cleavage. These data indicate that PrTX-I and PrTX-III possess regions other than the catalytic site, which determine their toxic and pharmacological activities. (C) 2001 Academic Press.