110 resultados para MYELINATION
Resumo:
Visual system abnormalities are commonly encountered in the fetal alcohol syndrome although the level of exposure at which they become manifest is uncertain. In this study we have examined the effects of either low (ETLD) or high dose (ETHD) ethanol, given between postnatal days 4-9, on the axons of the rat optic nerve. Rats were exposed to ethanol vapour in a special chamber for a period of 3 h per day during the treatment period. The blood alcohol concentration in the ETLD animals averaged similar to 171 mg/dl and in the ETHD animals similar to 430 mg/dl at the end of the treatment on any given day. Groups of 10 and 30-d-old mother-reared control (MRC), separation control (SC), ETLD and ETHD rats were anaesthetised with an intraperitoneal injection or ketamine and xylazine, and killed by intracardiac perfusion with phosphate-buffered glutaraldehyde. In the 10-d-old rat optic nerves there was a total of similar to 145000-165000 axons in MRC, SC and ETLD animals. About 4 % of these fibres were myelinated. The differences between these groups were not statistically significant. However, the 10-d-old ETHD animals had only about 75000 optic nerve axone (P < 0.05) of which about 2.8 % were myelinated. By 30 d of age there was a total of between 75000 90000 optic nerve axons, irrespective of the group examined. The proportion of axons which were myelinated at this age was still significantly lower (P < 0.001) in the ETHD animals (similar to 77 %) than in the other groups (about 98 %). It is concluded that the normal stages of development and maturation of the rat optic nerve axons, as assessed in this study, can be severely compromised by exposure to a relatively high (but not low) dose of ethanol between postnatal d 4 and 9.
Resumo:
Background: Decreased signal intensity in the corpus callosum, reported in adult bipolar disorder patients, has been regarded as an indicator of abnormalities in myelination. Here we compared the callosal signal intensity of children and adolescents with bipolar disorder to that of matched healthy subjects, to investigate the hypothesis that callosal myelination is abnormal in pediatric bipolar patients. Methods: Children and adolescents with DSM-lV bipolar disorder (n=16, mean age +/- S.D. = 15.5 +/- 3.4 y) and matched healthy comparison subjects (n=21, mean age +/- S.D.=16.9 3.8 y) underwent a 1.5 T MRI brain scan. Corpus callosuin signal intensity was measured using an Apple Power Mac G4 running NIH Image 1.62 software. Results: Bipolar children and adolescents had significantly lower corpus callosum signal intensity for all callosal sub-regions (genu, anterior body, posterior body, isthmus and splenium) compared to healthy subjects (ANCOVA, all p < 0.05, age and gender as covariates). Limitations: Relatively small sample size. Conclusions: Abnormalities in corpus callosum, probably due to altered myelination during neurodevelopment, may play a role in the pathophysiology of bipolar disorder among children and adolescents. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Schwann cells synthesize a large amount of membrane that form a specialized structure called myelin that surrounds axons and facilitate the transmission of electrical signal along neurons in peripheral nervous system (PNS). Previous studies demonstrated that both Schwann cell differentiation and de-differentiation (in the situation of a nerve injury or demyelinating disease) are regulated by cell-intrinsic regulators including several transcription factors. In particular, the de-differentiation of mature Schwann cells is driven by the activation of multiple negative regulators of myelination including Sox2, c-Jun, Notch and Pax3, all usually expressed in immature Schwann cells and suppressed at the onset of myelination. In order to identify new regulators of myelination involved in the development of the PNS, we analyzed the gene-expression profiling data from developing PNS and from three models of demyelinating neuropathies. This analysis led to the identification of Sox4, a member of the Sox family of transcription factors, as a potential candidate. To characterize the molecular function of Sox4 in PNS, we generated two transgenic lines of mice, which overexpress Sox4 specifically in Schwann cells. Detailed analysis of these mice showed that the overexpression of Sox4 in Schwann cells causes a delay in progression of myelination between post-natal day 2 (P2) and P5. Our in vitro analysis suggested that Sox4 cDNA can be overexpressed while the protein translation is tightly regulated. Interestingly, we observed that Sox4 protein is stabilized in nerves of the CMT4C mouse, a model of the human neuropathy. We therefore crossed Sox4 transgenic mice with CMT4C mice and we observed that Sox4 overexpression exacerbated the neuropathy phenotype in these mice. While recognized as being crucial for the normal function of both neurons and myelinating glial cells, the processes that regulate the beginning of myelination and the nature of the neuro-glial cross-talk remains mostly unknown. In order to gain insight into the molecular pathways involved in the interactions between neurons and associated glial cells, we developed a neuron-glia co-culture system based on microfluidic chambers and successfully induced myelination in this system by ascorbic acid. Importantly, we observed that in addition to acting on Schwann cells, ascorbic acid also modulate neuronal/axonal NRG1/ErbB2-B3 signalling. The experimental setting used in our study thus allowed us to discover a novel phenomena of propagation for myelination in vitro. The further characterization of this event brought us to identify other compounds able to induce myelination: ADAMs secretases inhibitor GM6001 and cyclic-AMP. The results generated during my thesis project are therefore not only important for the advancement of our understanding of how the PNS works, but may also potentially help to develop new therapies aiming at improvement of PNS myelination under disease conditions. - Les cellules de Schwann synthétisent une grande quantité de membrane formant une structure spécialisée appelée myéline qui entoure les axones et facilite la transmission du signal électrique le long des neurones du système nerveux périphérique (SNP). Des études antérieures ont démontré que la différenciation et la dédifférenciation des cellules de Schwann (dans la situation d'une lésion nerveuse ou d'une maladie démyélinisante) sont régulées par des régulateurs cellulaires intrinsèques, incluant plusieurs facteurs de transcription. En particulier, la dédifférenciation des cellules de Schwann matures est contrôlée par l'activation de plusieurs régulateurs négatifs de la myélinisation dont Sox2, c-Jun, Notch et Pax3, tous habituellement exprimés dans des cellules de Schwann immatures et supprimés au début de la myélinisation. Afin d'identifier de nouveaux régulateurs de myélinisation impliqués dans le développement du SNP, nous avons analysé le profil d'expression génique durant le développement du SNP ainsi que dans trois modèles de neuropathies démyélinisantes. Cette analyse a mené à l'identification de Sox4, un membre de la famille des facteurs de transcription Sox, comme étant un candidat potentiel. Dans le but de caractériser la fonction moléculaire de Sox4 dans le SNP, nous avons généré deux lignées transgéniques de souris qui surexpriment Sox4 spécifiquement dans les cellules de Schwann. L'analyse détaillée de ces souris a montré que la surexpression de Sox4 dans les cellules de Schwann provoque un retard dans la progression de la myélinisation entre le jour postnatal 2 (P2) et P5. Notre analyse in vitro a suggéré que l'ADNc de Sox4 peut être surexprimé alors que la traduction des protéines est quand à elle étroitement régulée. De façon intéressante, nous avons observé que la protéine Sox4 est stabilisée dans les nerfs des souris CMT4C, un modèle de neuropathie humaine. Nous avons donc croisé les souris transgéniques Sox4 avec des souris CMT4C et avons observé que la surexpression de Sox4 exacerbe le phénotype de neuropathie chez ces souris. Bien que reconnus comme étant cruciaux pour le fonctionnement normal des neurones et des cellules gliales myélinisantes, les processus qui régulent le début de la myélinisation ainsi que la nature des interactions neurone-glie restent largement méconnus. Afin de mieux comprendre les mécanismes moléculaires impliqués dans les interactions entre les neurones et les cellules gliales leur étant associés, nous avons développé un système de co-culture neurone-glie basé sur des chambres microfluidiques et y avons induit avec succès la myélinisation avec de l'acide ascorbique. Étonnamment, nous avons remarqué que, en plus d'agir sur les cellules de Schwann, l'acide ascorbique module également la voie de signalisation neuronale/axonale NRG1/ErbB2-B3. Le protocole expérimental utilisé dans notre étude a ainsi permis de découvrir un nouveau phénomène de propagation de la myélinisation in vitro. La caractérisation plus poussée de ce phénomène nous a menés à identifier d'autres composés capables d'induire la myélinisation: L'inhibiteur de sécrétases ADAMs GM6001 et l'AMP cyclique. Les résultats obtenus au cours de mon projet de thèse ne sont donc pas seulement importants pour l'avancement de notre compréhension sur la façon dont le SNP fonctionne, mais peuvent aussi potentiellement aider à développer de nouvelles thérapies visant à l'amélioration de la myélinisation du SNP dans des conditions pathologiques.
Resumo:
Previous clinical observations and data from mouse models with defects in lipid metabolism suggested that epineurial adipocytes may play a role in peripheral nervous system myelination. We have used adipocyte-specific Lpin1 knockout mice to characterize the consequences of the presence of impaired epineurial adipocytes on the myelinating peripheral nerve. Our data revealed that the capacity of Schwann cells to establish myelin, and the functional properties of peripheral nerves, were not affected by compromised epineurial adipocytes in adipocyte-specific Lpin1 knockout mice. To evaluate the possibility that Lpin1-negative adipocytes are still able to support endoneurial Schwann cells, we also characterized sciatic nerves from mice carrying epiblast-specific deletion of peroxisome proliferator-activated receptor gamma, which develop general lipoatrophy. Interestingly, even the complete loss of adipocytes in the epineurium of peroxisome proliferator-activated receptor gamma knockout mice did not lead to detectable defects in Schwann cell myelination. However, probably as a consequence of their hyperglycemia, these mice have reduced nerve conduction velocity, thus mimicking the phenotype observed under diabetic condition. Together, our data indicate that while adipocytes, as regulators of lipid and glucose homeostasis, play a role in nerve function, their presence in epineurium is not essential for establishment or maintenance of proper myelin.
Resumo:
Bovine growth hormone (bGH) and epidermal growth factor (EGF) increased the activity of ornithine decarboxylase (ODC) in brain cell aggregates cultured in a serum-free chemically defined medium. ODC is considered as a marker of cell growth and differentiation. The effect of bGH and EGF on myelination was investigated by measuring two myelin markers, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin basic protein (MBP). EGF treatment at days 2 and 5 caused a dose-dependent increase of both myelin markers at culture day 12. This increase could still be observed at culture day 19, indicating a prolonged action of EGF. The continual presence of bGH in the culture medium produced a large accumulation of MBP at day 19. This effect was dose-dependent and required the presence of triiodothyronine (T3). In contrast, the effect of bGH on CNP activity did not require the presence of T3. This is the first report showing a direct effect of bGH on CNS myelination in vitro and of EGF on both MBP accumulation and ODC activity.
Resumo:
Patients with Charcot-Marie-Tooth neuropathy and gene targeting in mice revealed an essential role for the SH3TC2 gene in peripheral nerve myelination. SH3TC2 expression is restricted to Schwann cells in the peripheral nervous system, and the gene product, SH3TC2, localizes to the perinuclear recycling compartment. Here, we show that SH3TC2 interacts with the small guanosine triphosphatase Rab11, which is known to regulate the recycling of internalized membranes and receptors back to the cell surface. Results of protein binding studies and transferrin receptor trafficking are in line with a role of SH3TC2 as a Rab11 effector molecule. Consistent with a function of Rab11 in Schwann cell myelination, SH3TC2 mutations that cause neuropathy disrupt the SH3TC2/Rab11 interaction, and forced expression of dominant negative Rab11 strongly impairs myelin formation in vitro. Our data indicate that the SH3TC2/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.
Resumo:
The biochemical development of rotation-mediated aggregating brain cell cultures was studied in a serum-free chemically defined medium in the presence (complete medium) or the absence of triiodothyronine (T3). The expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin basic protein (MBP), two myelin components, was temporally dissociated in brain cell aggregating cultures grown in a complete medium. CNP increased from day 8 and reached a plateau around day 25. MBP accumulated rapidly from the third until the fourth week in culture. The total protein content increased gradually until day 25. The activity of ornithine decarboxylase (ODC) used as an index of cell growth and differentiation, showed two well-defined peaks of activity. The first peak reached a maximum at day 6 and correlated with both the highest DNA content and the peak of [3H]-thymidine incorporation. The second peak of ODC activity (from day 19 to 35) coincided with the differentiation of oligodendrocytes. These results confirm that aggregating fetal rat brain cells cultured in a serum-free chemically defined medium undergo extensive differentiation. Addition of T3 to the culture medium doubled the CNP activity by day 16. In contrast, MBP was only slightly increased by day 16, reaching at 25 and 35 days 8 to 10-fold higher values than the untreated cultures. When T3 was removed between day 16 and 25, CNP decreased almost to control values and MBP failed to accumulate. Moreover, when T3 was reintroduced into the medium (between day 25 and 35), CNP activity was restored and MBP content was partially corrected. T3 treatment produced a concentration-dependent increase in ODC activity which was observed only around day 19. The first peak of ODC activity observed at culture day 6 was independent of the presence of T3. These results obtained in brain cell cultures emphasize the direct effect of T3 on myelination.
Resumo:
A fundamental tenet of neuroscience is that cortical functional differentiation is related to the cross-areal differences in cyto-, receptor-, and myeloarchitectonics that are observed in ex-vivo preparations. An ongoing challenge is to create noninvasive magnetic resonance (MR) imaging techniques that offer sufficient resolution, tissue contrast, accuracy and precision to allow for characterization of cortical architecture over an entire living human brain. One exciting development is the advent of fast, high-resolution quantitative mapping of basic MR parameters that reflect cortical myeloarchitecture. Here, we outline some of the theoretical and technical advances underlying this technique, particularly in terms of measuring and correcting for transmit and receive radio frequency field inhomogeneities. We also discuss new directions in analytic techniques, including higher resolution reconstructions of the cortical surface. We then discuss two recent applications of this technique. The first compares individual and group myelin maps to functional retinotopic maps in the same individuals, demonstrating a close relationship between functionally and myeloarchitectonically defined areal boundaries (as well as revealing an interesting disparity in a highly studied visual area). The second combines tonotopic and myeloarchitectonic mapping to localize primary auditory areas in individual healthy adults, using a similar strategy as combined electrophysiological and post-mortem myeloarchitectonic studies in non-human primates.
Resumo:
Aggregates of fetal rat brain were maintained in rotating culture for 30-40 days and were analyzed morphologically and biochemically. At 4 days in culture all cells were undifferentiated. At 26 days in vitro over 90% of all cells within the aggregates could be identified as neurons, astrocytes or oligodendrocytes. Myelinated axons and morphologically mature synapses were present at 26 days. Myelination started between 18 and 19 days in culture as determined biochemically. Myelin basic protein sulphatide synthesis and 2′,3′-cyclic nucleotide 3′-phosphohydrolase activity increased with in vitro age. The amount of myelin observed within the aggregates was much lower than observed at the corresponding age in vivo. Neurons and neuronal processes were undergoing severe degeneration in the 40-day aggregates and synaptic contacts were not maintained. There were no normal myelinated axons at 40 days although multilammellar membranes were found intra- and extracellularly. The ganglioside pattern of the aggregates were qualitatively similar to rat whole brain. Quantitatively the GM3ganglioside was elevated in comparison to whole rat brain. Our results indicate that aggregating rat brain cultures provide a useful in vitro system for the biochemical and morphological analysis of myelin formation.
Resumo:
Charcot-Marie-Tooth disease type 4C (CMT4C) is an early-onset, autosomal recessive form of demyelinating neuropathy. The clinical manifestations include progressive scoliosis, delayed age of walking, muscular atrophy, distal weakness, and reduced nerve conduction velocity. The gene mutated in CMT4C disease, SH3TC2/KIAA1985, was recently identified; however, the function of the protein it encodes remains unknown. We have generated knockout mice where the first exon of the Sh3tc2 gene is replaced with an enhanced GFP cassette. The Sh3tc2(DeltaEx1/DeltaEx1) knockout animals develop progressive peripheral neuropathy manifested by decreased motor and sensory nerve conduction velocity and hypomyelination. We show that Sh3tc2 is specifically expressed in Schwann cells and localizes to the plasma membrane and to the perinuclear endocytic recycling compartment, concordant with its possible function in myelination and/or in regions of axoglial interactions. Concomitantly, transcriptional profiling performed on the endoneurial compartment of peripheral nerves isolated from control and Sh3tc2(DeltaEx1/DeltaEx1) animals uncovered changes in transcripts encoding genes involved in myelination and cell adhesion. Finally, detailed analyses of the structures composed of compact and noncompact myelin in the peripheral nerve of Sh3tc2(DeltaEx1/DeltaEx1) animals revealed abnormal organization of the node of Ranvier, a phenotype that we confirmed in CMT4C patient nerve biopsies. The generated Sh3tc2 knockout mice thus present a reliable model of CMT4C neuropathy that was instrumental in establishing a role for Sh3tc2 in myelination and in the integrity of the node of Ranvier, a morphological phenotype that can be used as an additional CMT4C diagnostic marker.
Resumo:
Serum-free aggregating rat brain cell cultures provide sufficient cell surface and paracrine interactions between neurons and glial cells for compact myelination. We are interested in the part played in these signalling pathways by protein kinases and have used a PCR cDNA cloning approach to catalogue the protein kinase genes expressed by these cultures. 8 transmembrane protein kinases were identified: IGF1-R, trk B, bFGF-R, c-met, Tyro2, Tyro1, Tyro4 and a novel eck-related gene. The first 4 are receptors for ligands with known trophic functions. Tyro2 is a novel gene related to the EGF-R. The latter 3 belong to the eck gene family of more than 8 highly related putative receptors for, as yet, unknown ligands. 8 cDNAs for intracellular protein kinases were also isolated including 3 novel genes. Ongoing studies are investigating whether these proteins contribute to myelination and/or could be used as therapeutic targets in demyelinating diseases.
Resumo:
The present study evaluated the potential of using the phase of T2* weighted MR images to characterize myelination during brain development and pathology in rodents at 9.4 T. Phase contrast correlated with myelin content assessed by histology and suggests that most contrast between white and cortical gray matter is modulated by myelin. Ex vivo experiments showed that gray-white matter phase contrast remains unchanged after iron extraction. In dysmyelinated shiverer mice, phase imaging correlated strongly with myelin staining, showing reduced contrast between white and gray matter when compared to healthy controls. We conclude that high-resolution phase images, acquired at high field, allow assessment of myelination and dysmyelination.
Resumo:
Charcot-Marie-Tooth neuropathy (CMT) represents a heterogenous group of inherited disorders of the peripheral nervous system. One form of autosomal recessive demyelinating CMT (CMT4C, 5q32) is caused by mutations in the gene encoding KIAA1985, a protein of so far unknown function. Here we show that KIAA1985 is exclusively expressed in Schwann cells. KIAA1985 is tethered to cellular membranes through an N-terminal myristic acid anchor and localizes to the perinuclear recycling compartment. A search for proteins that interact with KIAA1985 identified the small GTPase Rab11, a key regulator of recycling endosome functions. CMT4C-related missense mutations disrupt the KIAA1985/Rab11 interaction. Protein binding studies indicate that KIAA1985 functions as a Rab11 effector, as it interacts only with active forms of Rab11 (WT and Q70L) and does not interact with the GDP locked mutant (S25N). Consistent with a function of Rab11 in Schwann cell myelination, myelin formation was strongly impaired when dorsal root ganglion neurons were co-cultured with Schwann cells infected with Rab11 S25N. Our data indicate that the KIAA1985/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.
Resumo:
In order to identify new regulators of Schwann cell myelination potentially playing a role in peripheral nervous system (PNS) pathologies, we analysed gene expression profiling data from three mouse models of demyelinating neuropathies and from the developing PNS. This analysis revealed that Sox4, which encodes a member of the Sry-related high-mobility group box protein family, was consistently upregulated in all three analysed models of neuropathy. Moreover, Sox4 showed a peak in its expression during development that corresponded with the onset of myelination. To gain further insights into the role of Sox4 in PNS development, we generated a transgenic mouse that specifically overexpresses Sox4 in Schwann cells. Sox4 overexpression led to a temporary delay in PNS myelination without affecting axonal sorting. Importantly, we observed that, whereas Sox4 mRNA could be efficiently overexpressed, Sox4 protein expression in Schwann cells was strictly regulated. Finally, our data showed that enforced expression of Sox4 in the mouse model for Charcot-Marie-Tooth 4C aggravated its neuropathic phenotype. Together, these observations reveal that Sox4 contributes to the regulation of Schwann cell myelination, and also indicates its involvement in the pathophysiology of peripheral neuropathies.