999 resultados para MULTIPLE OVULATION
Resumo:
The potential to use a GnRH agonist bioimplant and injection of exogenous LH to control the time of ovulation in a multiple ovulation and embryo transfer (MOET) protocol was examined in buffalo. Mixed-parity buffalo (Bubalus bubalis; 4-15-year-old; 529 13 kg LW) were randomly assigned to one of five groups (n = 6): Group 1, conventional MOET protocol; Group 2, conventional MOET with 12 It delay in injection of PGF(2alpha); Group 3, implanted with GnRH agonist to block the pre-ovulatory surge release of LH; Group 4, implanted with GnRH agonist and injected with exogenous LH (Lutropin(R), 25 mg) 24 h after 4 days of superstimulation with FSH; Group 5, implanted with GnRH agonist and injected with LH 36 h after superstimulation with FSH. Ovarian follicular growth in all buffaloes was stimulated by treatment with FSH (Folltropin-V(R), 200 mg) administered over 4 days, and was monitored by ovarian ultrasonography. At the time of estrus, the number of follicles greater than or equal to8 mm. was greater (P < 0.05) for buffaloes in Group 2 (12.8) than for buffaloes in Groups 1 (8.5), 3 (7.3), 4 (6.1) and 5 (6.8), which did not differ. All buffaloes were mated by AI after spontaneous (Groups 1-3) or induced (Groups 4 and 5) ovulation. The respective number of buffalo that ovulated, number of corpora lutea, ovulation rate (%), and embryos + oocytes recovered were: Group 1 (2, 1.8 +/- 1.6, 18.0 +/- 13.6, 0.2 +/- 0.2); Group 2 (4, 6.1 +/- 2.9, 40.5 +/- 17.5, 3.7 +/- 2.1); Group 3 (0, 0, 0, 0); Group 4 (6, 4.3 +/- 1.2, 69.3 +/- 14.2, 2.0 +/- 0.9); and Group 5 (1, 2.5 +/- 2.5, 15.5 +/- 15.5, 2.1 +/- 2.1). All buffaloes in Group 4 ovulated after injection of LH and had a relatively high ovulation rate (69%) and embryo recovery (46%). It has been shown that the GnRH agonist-LH protocol can be used to improve the efficiency of MOET in buffalo. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Concentrations of follicle-stimulating hormone (FSH) have an important role in multiple ovulation. An association has been reported between mutations in the FSH receptor (FSHR) in a family with Increased twinning frequency. We sequenced the transmembrane region of FSHR (located on chromosome 2) in 21 unrelated mothers of dizygotic twins and found no differences to the published sequence. A linkage study of 183 sister pairs and trios, in which all sisters had given birth to spontaneous dizygotic twins, excluded linkage to this region of chromosome 2. Wa conclude that mutations in FSHR are not a common cause of familial dizygotic twinning.
Resumo:
This study investigated the effect of human-animal interaction (HAI) and the stress response on the quality of embryo production in superovulated Nelore (Bos indicus) cattle, under tropical conditions. Thirty-two females underwent a superovulation protocol for 5 days. Cortisol concentrations were determined in blood plasma collected on days 0, 4, and 5. Artificial insemination was performed on days 4 and 5, and nonsurgical embryo flushing on day 11. Embryo production and viability were determined. Human stimulation, animal behaviors, accidents, and handling time were recorded to assess HAI. Cattle age was negatively correlated with accidents, frequency of aversive behaviors, and negative stimuli by stockperson during transit through corral compartments to receive superovulation treatments. The factor analysis revealed two distinct groups. The first group was called stressed and had higher cortisol concentration than the nonstressed group, 16.0 +/- 2.1 and 12.5 +/- 1.0 ng/mL, respectively. Comparisons between these groups showed that the frequency of voice emissions by the stockperson and the number of accidents were higher in the stressed group, and also, the mean handling time was longer in the stressed group than for the nonstressed. As a result, viability rate of the embryos was 19% lower in the stressed group (P < 0.05). This indicates that intensive negative HAI is likely related to stress, which affects embryo production in a superovulation program.
Resumo:
Equine pituitary extract (EPE), has been reported to induce multiple ovulation in mares, however ovulation rates are poor in comparison to those obtained in other species. Attempts to improve the effectiveness of EPE for induction of superovulation in cyclic mares has focused on daily frequency of EPE treatment. Two experiments were performed to compare the ovarian response of cyclic mares given EPE once or twice-daily. Mares were assigned to one of two treatment groups 6 to 8 days after ovulation: prostaglandin was given once and EPE (25 mg) was given once daily (Group 1) or twice daily (Group 2). In Experiment 1, more (P < 0.05) follicles
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the last decades several hormonal treatments to induce multiple ovulation and embryo transfer (MOET) have been developed. Tight control of the time of ovulation allowed the use of fixed-time artificial insemination (FTAI) in embryos donors, facilitating animal management. Although, protocols that allow FTAI have evolved and yield as much embryo as conventional protocols that requires estrus detection, substantial increase in viable embryo production has not been observed in superestimulated bovine cattle. The present mini-review put emphasis on superstimulatory protocols in which the last two doses of pFSH are replaced by eCG or LH. Recent results indicate that an extra LH stimulus (using eCG or LH), on the last day of P-36 superestimulatory treatment, seems to improve transferable embryo yield in both Bos taurus and Bos indicus cattle.
Resumo:
Multiple ovulation (superovulation) and embryo transfer has been used extensively in cattle. In the past decade, superstimulatory treatment protocols that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-time AI (FTAI), have been developed for zebu (Bos indicus) and European (Bos taurus) breeds of cattle. There is evidence that additional stimulus with LH (through the administration of exogenous LH or equine chorionic gonadotrophin (eCG)) on the last day of the superstimulatory treatment protocol, called the 'P-36 protocol' for FTAI, can increase embryo yield compared with conventional protocols that are based on the detection of oestrus. However, inconsistent results with the use of hormones that stimulate LH receptors (LHR) have prompted further studies on the roles of LH and its receptors in ovulatory capacity (acquisition of LHR in granulosa cells), oocyte competence and embryo quality in superstimulated cattle. Recent experiments have shown that superstimulation with FSH increases mRNA expression of LHR and angiotensin AT(2) receptors in granulosa cells of follicles >8 mm in diameter. In addition, FSH decreases mRNA expression of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in oocytes, but increases the expression of both in cumulus cells, without diminishing the capacity of cumulus-oocyte complexes to generate blastocysts. Although these results indicate that superstimulation with FSH is not detrimental to oocyte competence, supplementary studies are warranted to investigate the effects of superstimulation on embryo quality and viability. In addition, experiments comparing the cellular and/or molecular effects of adding eCG to the P-36 treatment protocol are being conducted to elucidate the effects of superstimulatory protocols on the yield of viable embryos.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
In the last decades several hormonal treatments to induce multiple ovulation and embryo transfer (MOET) have been developed. Tight control of the time of ovulation allowed the use of fixed-time artificial insemination (FTAI) in bovine embryos donors, facilitating animal management. Although, protocols that allow FTAI have evolved and yield as much embryo as conventional protocols that requires estrus detection, substantial increase in viable embryo production has not been observed in superestimulated bovine cattle. The present review put emphasis on superestimulatory protocols in wich the last two doses of pFSH are replaced by eCG or LH. Recent results indicate that an extra LH stimulus (using eCG or LH), on the last day of P-36 superestimulatory treatment, seems to improve transferable embryo yield in both Bos taurus and Bos indicus cattle.