998 resultados para MULTIFRACTAL ANALYSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multifractal properties of two indices of geomagnetic activity, D st (representative of low latitudes) and a p (representative of the global geomagnetic activity), with the solar X-ray brightness, X l , during the period from 1 March 1995 to 17 June 2003 are examined using multifractal detrended fluctuation analysis (MF-DFA). The h(q) curves of D st and a p in the MF-DFA are similar to each other, but they are different from that of X l , indicating that the scaling properties of X l are different from those of D st and a p . Hence, one should not predict the magnitude of magnetic storms directly from solar X-ray observations. However, a strong relationship exists between the classes of the solar X-ray irradiance (the classes being chosen to separate solar flares of class X-M, class C, and class B or less, including no flares) in hourly measurements and the geomagnetic disturbances (large to moderate, small, or quiet) seen in D st and a p during the active period. Each time series was converted into a symbolic sequence using three classes. The frequency, yielding the measure representations, of the substrings in the symbolic sequences then characterizes the pattern of space weather events. Using the MF-DFA method and traditional multifractal analysis, we calculate the h(q), D(q), and τ (q) curves of the measure representations. The τ (q) curves indicate that the measure representations of these three indices are multifractal. On the basis of this three-class clustering, we find that the h(q), D(q), and τ (q) curves of the measure representations of these three indices are similar to each other for positive values of q. Hence, a positive flare storm class dependence is reflected in the scaling exponents h(q) in the MF-DFA and the multifractal exponents D(q) and τ (q). This finding indicates that the use of the solar flare classes could improve the prediction of the D st classes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the multifractal formalism, we discuss the results obtained to characterized the morphology of polymer alloys and granular discontinuous metallic thin films. In the first case we have found a correlation between the multifractality and the mechanical properties of the alloys. In the second case, we have found that it is possible to measure the differences between the morphology of thin films induced by a growth process on a subtrate and that of percolation clusters of the classical theory of percolation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use multifractal analysis (MFA) to investigate how the Rényi dimensions of the solid mass and the pore space in porous structures are related to each other. To our knowledge, there is no investigation about the relationship of Rényi or generalized dimensions of two phases of the same structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a tool to carry out the multifractal analysis of binary, two-dimensional images through the calculation of the Rényi D(q) dimensions and associated statistical regressions. The estimation of a (mono)fractal dimension corresponds to the special case where the moment order is q = 0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractal and multifractal are concepts that have grown increasingly popular in recent years in the soil analysis, along with the development of fractal models. One of the common steps is to calculate the slope of a linear fit commonly using least squares method. This shouldn?t be a special problem, however, in many situations using experimental data the researcher has to select the range of scales at which is going to work neglecting the rest of points to achieve the best linearity that in this type of analysis is necessary. Robust regression is a form of regression analysis designed to circumvent some limitations of traditional parametric and non-parametric methods. In this method we don?t have to assume that the outlier point is simply an extreme observation drawn from the tail of a normal distribution not compromising the validity of the regression results. In this work we have evaluated the capacity of robust regression to select the points in the experimental data used trying to avoid subjective choices. Based on this analysis we have developed a new work methodology that implies two basic steps: ? Evaluation of the improvement of linear fitting when consecutive points are eliminated based on R pvalue. In this way we consider the implications of reducing the number of points. ? Evaluation of the significance of slope difference between fitting with the two extremes points and fitted with the available points. We compare the results applying this methodology and the common used least squares one. The data selected for these comparisons are coming from experimental soil roughness transect and simulated based on middle point displacement method adding tendencies and noise. The results are discussed indicating the advantages and disadvantages of each methodology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genomic and proteomic analyses have attracted a great deal of interests in biological research in recent years. Many methods have been applied to discover useful information contained in the enormous databases of genomic sequences and amino acid sequences. The results of these investigations inspire further research in biological fields in return. These biological sequences, which may be considered as multiscale sequences, have some specific features which need further efforts to characterise using more refined methods. This project aims to study some of these biological challenges with multiscale analysis methods and stochastic modelling approach. The first part of the thesis aims to cluster some unknown proteins, and classify their families as well as their structural classes. A development in proteomic analysis is concerned with the determination of protein functions. The first step in this development is to classify proteins and predict their families. This motives us to study some unknown proteins from specific families, and to cluster them into families and structural classes. We select a large number of proteins from the same families or superfamilies, and link them to simulate some unknown large proteins from these families. We use multifractal analysis and the wavelet method to capture the characteristics of these linked proteins. The simulation results show that the method is valid for the classification of large proteins. The second part of the thesis aims to explore the relationship of proteins based on a layered comparison with their components. Many methods are based on homology of proteins because the resemblance at the protein sequence level normally indicates the similarity of functions and structures. However, some proteins may have similar functions with low sequential identity. We consider protein sequences at detail level to investigate the problem of comparison of proteins. The comparison is based on the empirical mode decomposition (EMD), and protein sequences are detected with the intrinsic mode functions. A measure of similarity is introduced with a new cross-correlation formula. The similarity results show that the EMD is useful for detection of functional relationships of proteins. The third part of the thesis aims to investigate the transcriptional regulatory network of yeast cell cycle via stochastic differential equations. As the investigation of genome-wide gene expressions has become a focus in genomic analysis, researchers have tried to understand the mechanisms of the yeast genome for many years. How cells control gene expressions still needs further investigation. We use a stochastic differential equation to model the expression profile of a target gene. We modify the model with a Gaussian membership function. For each target gene, a transcriptional rate is obtained, and the estimated transcriptional rate is also calculated with the information from five possible transcriptional regulators. Some regulators of these target genes are verified with the related references. With these results, we construct a transcriptional regulatory network for the genes from the yeast Saccharomyces cerevisiae. The construction of transcriptional regulatory network is useful for detecting more mechanisms of the yeast cell cycle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many studies have shown that we can gain additional information on time series by investigating their accompanying complex networks. In this work, we investigate the fundamental topological and fractal properties of recurrence networks constructed from fractional Brownian motions (FBMs). First, our results indicate that the constructed recurrence networks have exponential degree distributions; the average degree exponent 〈λ〉 increases first and then decreases with the increase of Hurst index H of the associated FBMs; the relationship between H and 〈λ〉 can be represented by a cubic polynomial function. We next focus on the motif rank distribution of recurrence networks, so that we can better understand networks at the local structure level. We find the interesting superfamily phenomenon, i.e., the recurrence networks with the same motif rank pattern being grouped into two superfamilies. Last, we numerically analyze the fractal and multifractal properties of recurrence networks. We find that the average fractal dimension 〈dB〉 of recurrence networks decreases with the Hurst index H of the associated FBMs, and their dependence approximately satisfies the linear formula 〈dB〉≈2-H, which means that the fractal dimension of the associated recurrence network is close to that of the graph of the FBM. Moreover, our numerical results of multifractal analysis show that the multifractality exists in these recurrence networks, and the multifractality of these networks becomes stronger at first and then weaker when the Hurst index of the associated time series becomes larger from 0.4 to 0.95. In particular, the recurrence network with the Hurst index H=0.5 possesses the strongest multifractality. In addition, the dependence relationships of the average information dimension 〈D(1)〉 and the average correlation dimension 〈D(2)〉 on the Hurst index H can also be fitted well with linear functions. Our results strongly suggest that the recurrence network inherits the basic characteristic and the fractal nature of the associated FBM series.